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The Unified Accelerator Libraries (UAL) provide a modularized envi- 
ronment for applying diverse accelerator simulation codes. Development 
of UAL is strongly prejudiced toward1 importing existing codes rather than 
developing new ones. This guide pralvides instructions for using this envi- 
ronment. This includes instructions for acquiring and building the codes, 
then for launching and interpreting some of the examples included with the 
distribution. In some cases the examples are general enough to be applied 
to different accelerators by mimicking input files and input parameters. The 
intention is to provide just enough computer language discussion (C++ and 
Ped) to support the use and understanding of the examples and to help the 
reader gain a general understanding of the overall architecture. Otherwise 
the manual is “documentation by example.” Except for an appendix con- 
cerning maps, discussion of physics is limited to comments accompanying 
the numerous code examples. Importation of codes into UAL is an ongoing 
enterprise and when a code is said to have been Tmported it does not nec- 
essarily mean that all features are supported. Other than this, the original 
documentation remains applicable (a.nd is not duplicated here.) 
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Chapter 1. 
Introduction 

This is supposed to be something of a “quick start” manual. The reader looking 

for a quickest possible start should skip to Chapter 3, Code Checkout and Environment 

Variables, and from there to Chapter 6, Annotated Examples. 

If “pure physics” is the analysis of physical systems made possible by their ideal- 

ization, then the pure physics of acceleratoi:~ reduces to a rather small package. Circu- 

lar accelerators basically work, with proper ties matching the expectations of Lawrence, 

Kerst-Serber, McMillen-Veksler, Courant-Snyder, and a few others. The rest of acceler- 

ator physics amounts to understanding why accelerators don’t work very well, or rather, 

to efforts to make them work better. The problem is that the actual performance of an 

accelerator depends on features that violat e the idealization mentioned previously. At 

the risk of exaggerating the point, one might therefore say that the bulk of accelerator 

physics is an antithesis of pure physics, in that it amounts to analyzing non-ideal sys- 

tems. Hamiltonian requirements are easily met only in a linearized approximation that 

becomes progressively less valid as accelerators become larger. This has called for modest 

extensions of the theoretical foundations, but far more essential difficulty comes from the 

vastly increased number of influential degrees of freedom that enter as deviation from the 

ideal needs to be described. This is nowhere more true than in accelerator physics, where 

thousands of pieces of uncorrelated data are needed to describe a large accelerator. Since 

the handling of complicated data is more nearly the subject of computer science than of 

physics, it seems sensible to take advantage of advances that have been made in computer 

science. This requires a certain amount of reorientation for those physicists who think of 

themselves as having invented computer science. 

Of the many contributors, some to TEAPOT, some to UAL, the following deserve 

special mention: Chris Iselin (for establishing a standard to be emulated), Maury Tigner 

(for suggesting the task), Lindsay Schachinger (for establishing the pattern and getting 

the project off the ground), Alexander Reshatov (for contribution to the UAL conceptual 

design), and George Bourianoff and Jie Wei (for enthusiastic support). 

- 1. - 
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1.1. General description of UAI, 

The Unified Accelerator Libraries (UAL)1-’2 attempt to “manage the ~mplexity” of ac- 

celerators by providing an environment’ for simulating a variety of properties of a variety 

of accelerators using a variety of simulation codes and methods. The intended value of the 

environment is to provide homogeneous access to these resources while masking their diver- 

sity yet assuring their consistency. This allows different methods to be consistently applied 

to the same accelerator and the same methods to be applied to different accelerators. An- 

other potential benefit is the feasability and economy of “infrastructure” (shared resources) 

such as postprocessors, plotting/histogramming/fitting, input and output translation, and 

parallel processing. 

At this time, the object-oriented programs included in UAL are: PAC (Platform for 

Accelerator Codes) , ZLIB (Numerical Libra:ry for Differential Algebra), TEAPOT (Thin 

Element Program for Optics and Tracking) , ACCSIM (Accumulator Simulation Code) , 
ORBIT (Objective Ring Beam Injection and Tracking Code). Modules that are partially 

supported and are under active development are ICE (Incoherent and Coherent Effects), 

AIM (Accelerator Insturnentation Module), SPINK (tracks polarized particles in circular 

accelerator), and TIBETAN (longitudinal phase space tracking). The Application Pro- 

gramming Interface (API), written in Perl, .provides a universal shell for integrating and 

managing all project extensions. 

Three UAL manuals are planned of which this is the first: 

0 User Guide. A manual containing the bare minimum of information needed to 

acquire and build the code and to run t:he examples. In many cases the example 

codes should be close enough to a problem of interest to enable the user to perform 

other simulations by mimicking external inputs and Perl scripts. 

0 Physics Manual. This manual will describe and explain the physical methods 

used in the various modules, in many cases giving annotated reference to external 

manuals and documentation. This manual will also provide sufficient reference to 

the Developer’s Manual and online documentation to support “looking under the 

hood” to enable the user to perform code modifications and additions. 
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0 Developer’s Manual. This manual supplies full technical documentation. It consists 

largely of online documentation, much of .which is available at h t t p  : //www . ual . bnl . gov 

The primary programming languages of UAL are C++, which provides fast, secure, 

basic calculations and Perl, which provides .a flexible user interface. Both are object ori- 

ented. 

In this manual typewriter font is used to exhibit text that would be visible on a 

computer monitor, either because the text is being viewed by a text editor or because a 

program has generated it as output. Italic ,font is used when a term or program having 

a narrow technical sense is first introduced ([often without even the pretense of immediate 

definition) or f o r  emphasis. “Quotation marks” indicate either that a term is actually 

being defined or that it is being used loosely. 

1.2. Modularity and object orientation 

As has been stated already, the prime purpose of UAL is to “unify” diverse codes 

and procedures. Diverse codes are to form “modules” in an evolving, unified, coherent 

environment. Modularity is a challenging and universally-applauded attribute that all 

computer codes strive for, and some achieve, at least in individually-developed, single- 

purpose codes. Two such codes being applied to the same system would certainly be 

modular, relative to each other, but they would be too modular if their representations of 

the system were too different and too complicated. In this situation it is hard to assure 

that the systems represented in the two codes are, in fact, the same. This consideration 

makes the task of unifying multipurpose, multideveloper codes all the more challenging. 

To facilitate such unification UAL has introduced an open architecture in which di- 

verse accelerator codes are connected toget.her via common accelerator objects such as 

Element, Bunch, Twiss, etc. In this architecture each accelerator code is implemented 

as an object-oriented library of C++ classes. There is a very natural identification of 

physical elements, such as magnets, with their representation by computer objects. UAL 

supports considerable flexibility in the attributes of all objects-certainly enough that all 

attributes of objects contained in modules included so far have been describable without 
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constraint. Such flexibility has made it practical to evaluate, compare, and integrate a 

variety of design models and to build heterogeneous, project-specific applications. This 

experience has motivated the development of the Element-Algorithm-Probe framework4 

that will be a core part of the UAL release currently being completed. This framework 

is intended to provide a uniform mechanism for combining diverse modules to simulate 

complex combinations of physical effects and dynamic processes. t 

One of the purposes of this manual is to make clear the way object orientation helps in 

such unification, and thereby justify its adoption by UAL. Object-oriented methodology 

affects code developers far more than it affects code users. It is not necessary for a user 

of UAL to endorse object-orientation or even to understand exactly what constitutes an 

object-oriented program. The single consideration that most distinguishes object-oriented 

code from procedural code is the priority assigned to, on the one hand, data, and, on 

the other hand, the procedures used to process data. (Procedures are always mathematics, 

broadly defined.) The procedural program lavishes great care on the procedures and treats 

data casually if not contemptuously-like a feudal lord managing his vassals. In object- 

oriented code the data is pre-eminent and demands orderly management-like a democratic 

people demanding to be governed by laws. 

Since data is usually descriptive of the structure of stationary objects, and procedures 

change data, it can be said that procedures represent behavior, a subject inherently more 

complicated than structure. In this sense object-orientation should be expected to be 

simpler than procedural-orientation. A system built around objects rather than around 

functionality more closely corresponds to the humanly-comprehended world. 

~ 

t The Element-Algorithm-Probe framework is not actually used in the Perl-based examples described 
in this manual. There is, however, a preliminary directory, $UAL/examples/FastTeapot (symbol $UAL is 
defined in Chapter 3) that contains code which applies the Element-Algorithm-Probe framework. The script 
rhic.pl in this directory applies standard, Perl-based, UAL analysis (as documented in this guide) to a 
RHIC lattice as it is defined by its SXF (Standard Exchange Format).This same lattice is used by the 
FastTeapot code contained in subdirectories of the 'same directory. The main incentive for speeding up 
the UAL simulation capability has been to improve its serviceability for online modeling. In order to be 
fast  as well as control-system-embeddable, FastTeapot is written in C++. The C++ code is contained in the 
$UAL/examples/FastTeapot/src directory and the examples of its use for map generation and map-tracking 
are in $UAL/examples/FastTeapot/linux. Instruct ions for compiling the code and running the examples 
are given in a README file. Except for brief comments in section 6.7, FastTeapot is not otherwise documented 
in this guide, but understanding the material in this guide is something of a prerequisite to using FastTeapot. 
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Here is an example of encapsulation, which is one of the cornerstones of object- 

orientation. Consider the distinction between file names in Unix and in Windows. The 

filename of a Unix text file merely identifies the file, with no necessary implication what- 

soever as to the intended use or treatment O F  the data it contains. In the “8f3” file name 

plus extension conventiont of Windows the data is organized in such a way as to be acces- 

sible only by the collection of calculational procedures that is identified by the 3-character 

extension of the file name. 

The term encapsulation is perhaps not as descriptive of this feature of object-orientation 

as the closely related term data hiding. Thl: organization of data into structure’s in pro- 

cedural languages like C or Fortran might deserve to be called “encapsulation” in the 

colloquial use of that term. But in those languages this does not imply any reduction in 

accessability. Data hiding intentionally restricts access to data. 

There would be no point in hiding data if there were no mechanism for accessing the 

hidden data. So the term encapsulation also conveys the meaning that the calculational 

procedures needed to access the hidden data, (they are always called methods in this con- 

text) are linked to the data as part of the same encapsulation. These methods will 

have been authenticated by the same developer whose job has been to organize the data. 

This helps to make the access to, and processing of, data contained in complicated data 

structures more reliable. Any spreadsheet usler will agree that is is more reliable to use the 

spreadsheet’s methods than it would be to search for and find, and then process, the data 

“hidden” in the spreadsheet file. 

The distinction between object-orientation and procedural-orientation can be contin- 

ued by comparing structures and functions, the procedural mechanisms supporting mod- 

ularization, with objects, classes, and methods, the object-oriented mechanisms. As far as 

the data it contains and its having a name, an object is the same thing as a structure. But, 

by virtue of its belonging to a class, the attributes of an object are subject to manipulation 

(including creation and destruction) exclusively by the methods of its class. “Method” 

and “function” would be synonyms except that a method must “belong to” a class and a 

function need not. Both attributes and methods are referred to as class members. 

t The “8f3” file name plus extension file naming of Windows, though an abomination for most purposes, 
has undoubtedly helped Microsoft’s profits by billions of dollars. 
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Two other features that characterize object-oriention, overloading (also known as “poly- 

morphism”) and inheritance, will be mentioned below when their application within UAL 

is being explained. 

Within UAL the object-orientation is “enforced” by C++ and, a priori, one might 

expect no other computer language to be required. But, by now, it is universally agreed 

that this approach is too inconvenient for users, and that it is necessary to produce a 

consistent interface using a “control” language. For UAL (at this time) this language is 

Perl. The interface is textual+ (not graphical) and, line-by-line, its instructions may look 

to the user very much like the directives in a procedural code like MAD.5 This makes 

it possible to “pay no attention to the man, behind the curtain” and treat the input as 

an old-fashioned, procedural control file. The most important step in going beyond this 

level is to acquire an understanding of the rnodularixation mechanism of the code, which 

is based on the naming of directories, classes, modules, and so on. This puts the greatest 

demands on Perl, as the interface, and on the user, trying to use and understand the code. 

This discussion continues below in Section 4. 

Even apart from the diversity of codes supported, there is inherent difficulty in doc- 

umenting a modularized open environment.. Many or most of the users for whom the 

UAL environment is potentially of greatest value are probably most familiar with a closed 

code having strict input language, such as MAD. Such input languages capture relevant 

“use cases” (computer science jargon) of accelerator applications and organize them as 

a sequence of commands, starting from the lattice description, proceeding through “ac- 

tions” (magnet field error distribution, tuning, etc.) and finally to results (lattice function 

determination, etc.) This use-case-organized interface matches the expectations of most 

Because the UAL command language is Perl, a graphical interface to Perl would serve as a graphical 
interface to UAL. Something approaching this is provided by a free utility called DDD which provides a 
graphical debugging interface to  various languages, including Perl. DDD permits the user to proceed step- 
by-step through a Perl script, or to continue to the next user-inserted breakpoint. While the script is stopped 
variable values can be inspected, or even altered. Other typical debugging capabilities are also supported. 
This is an excellent facility for the user to gain familiarity with UAL’s example scripts. At this time DDD is 
restricted to the Perl level as it is not mature enough to “step” down into the Cff  extensions UAL employs, 
or even to exhibit values in the Cf+ domain. Failure to  respect this causes DDD to crash, so one has to 
learn to avoid making such requests. Fortunately the cost of crashing is not high as the same state can be 
recovered quickly with a few button clicks. Crashes can sometimes be avoided by setting multiple breakpoints 
and continuing from breakpoint to breakpoint rather i;han stepping from instruction to instruction. Perhaps 
a more powerful displaying debugger will come available in the future. 
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users. Such “sequentially-organized” codes proceed from start to finish with minimal 

branching and it is natural for the documentation to be organized along the same lines. 

An open environment, on the other hand, is “module-organized”, allowing the user to 

pick and choose among various modules for building project-specific applications. If the 

modules are well-designed, with clean interfaces, they tend to be “self-documenting” , as 

the existence of modern “documentation engines” proves. UAL uses the utility dozygen 

for automatic generation of on-line documentation. The existence of this documentation 

helps to amortize the initial expenditure in (code development for the code developer and 

in conceptual effort required of the code user. The clean interfaces make it practical for 

a user to make controlled ad hoc changes to localized blocks of code without the need to 

understand the rest of the code. 

UAL strives to preserve the advantage13 of both use-case and module-oriented ap- 

proaches, by encouraging a division of labor between code developer and code user. Work- 

ing in an object-oriented “research environment” the goal of the developer is to supply a 

“use case” view of the code which, ideally, allows the code user to be most productive. The 

mechanism for accomplishing is known as a Shell (or Fugade) layer. This layer hides the 

complexity of the numerous interfaces of the underlying UAL components and implements 

a list of MAD-like Per1 commands that delegate user requests to appropriate modules. 

Since this manual is intended primarily for the code user rather than for the code 

developer, technical code features are discussed only to a depth judged appropriate to 

provide the user with general orientation and critical appreciation of the fundamental 

issues. 

This manual therefore consists mainly of “documentation by example”. It is supposed 

to supply a minimal set of intructions adequate to guide the user through meaningful 

calculations while treating UAL as a traditional accelerator code. The variety of examples 

is intended to carry the user part way along a path of acquiring confidence in the results 

without requiring detailed understanding of the mechanisms by which they have been 

obtained. To obtain fuller confidence the user is expected either to develop test examples 

or to delve more deeply into the code, guided by other manuals and documentation. 

It would be a formidable task to study thoroughly the various programming tools, 

languages and systems on which UAL depends. References are given to literature that 
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seem to us to be appropriately elementary arid useful. The instructions in this manual are 

supposed to be mechanical enough that thesle references are inessential for first running of 

the examples, but they may be useful in advancing past the beginning stage. 



Chapter 2. 
The Architecture of UAL 
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/ A Element-Algorithm-Probe Framework 

The architecture of UAL has evolved gradually over more than a decade, starting as a 

special purpose, Fortran, symplectic trackin-g code and evolving into a home for diverse 

codes. The early evolution, and its motivation, is described briefly in Appendix A. The 

main goal was, and still is, to simulate the performance of accelerators. What has changed 

is the methodology used to achieve this end. 

ALE Application Scripts 

I I 

The components of UAL and their relationships are illustrated pictorially in Fig. 2.1. 

The figure represents dependency metaphorically, by gravity; codes appearing higher up 

are supported by (that is use) objects and methods belonging to codes appearing lower 

down. The lowest tier consists of the Element-Algorithm-Probe framework, which uses 

algorithms to evolve probes (i.e. bunches, maps, Twiss functions, etc.) through accelera- 

tor elements. Along with ZLIB (Numerical Library for Differential Algebra) this supports 

PAC (Platform for Accelerator Codes) which defines Accelerator Objects, such as magnets, 

- SI - 
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lattice, particles, bunch, etc. These components form the “model” part of a three part 

simulation environment containing elements that are common to all modules, and there- 

fore support connections between different imodules. They are the glue that holds UAL 

together. 

The second major part of the simulation environment consists of the boxes, TEAPOT, 

ACCSIM, . . ., TIBETAN, which stand for accelerator simulation modules, coded in C f f .  

In most cases these modules derive from earlier, procedural, Fortran codes, which have 

been ported to Cff .  They constitute the ‘cphysics” supported at this time; things like 

tracking, analysis, optimization, correction a,lgorithms, etc. They form the “actions” part 

of the organization. Each of these modules is a separate, self-contained library of C++ 

classes having its own internal organization and methods. For completeness the module 

MPI (Message-Passing Interface)‘ which supports parallel processing is also shown. 

The separation mentioned so far, into accelerator objects, on the one hand, and actions, 

on the other, is very comparable to  the similar separation in any procedural program 

deriving its input from a file such as MAD.t 

The upper levels of Fig. 2.1 contain the “controller” part of the environment. The 

API (Application Program Interface), written in Perl, makes available to the user the 

capabilities of the various modules while “hiding” as much as possible of their complexity. 

Scripts appropriate to particular accelerators, RHIC, LHC, SNS, etc. are based on the 

user-friendly facade or interface ALE (Accelerator Library Extension). However, most of 

the examples documented in this guide use directly the more generic ALE shell that is not 

specific to any particular accelerator. 

Much of the heterogeneity that UAL is intended to address concerns the diversity of 

The UAL mechanism for the accommodation of input sources is lattice descriptions. 

illustrated in Fig. 2.2. 

Internal to UAL the lattice description is known as SMF (Standard Machine For- 

mat). SMF, the sine qua non of UAL, is a parameterization of a general accelerator and 

its components. It was designed to be very general, and furthermore it is extensible, 

t Because “closed” codes have their own specializations, it is natural for them to have their own proprietary 
“embedded” parsers. There is then a tendency toward “Tower of Babel” divergence, especially concerning 
the actions part of the input language. 
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PAC 
SMF 1 SMFBuilder I 

‘ I I I  I SXF-Builder I I MAD-Builder I I ADXF-Builder I 
“I I 

I SIF 

Data sources SXF MAD ADXF 

Figure 2.2: Treatment of input data by UAL. This figure can be regarded 
as an extension of Fig. 2.1, with the ‘box labeled PAC being repeated here, 
and with the part of its internals used for input processing exhibited. 

and completely neutrd as regards physical methods of analysis. So it is possible to add 

attributes that happen to be needed for any particular module being added. But it is 

only feasible to simulate things that are recognizably “accelerators”. At this time only 

“circular” accelerators have been modeled, but a way to incorporate linear accelerators 

has been worked out. More detail will be given below concerning many of the boxes in 

Fig. 2.1 and Fig. 2.2. Further details concerning SMF are given in appendix D. 



Chapter 3. 
Code Checkout and Environment Variables 

As part of the object orientation of the code the various modules are referenced by sym- 

bolic names. A helpful convention is that these names are consistently related to the names 

of the code-containing directories, but these directory names may themselves be expressed 

relative to symbolic environment variables. To use the UAL environment it is therefore 

absolutely essential for all environment variables to be set correctly. One way of helping 

to establish and preserve this state is to set up a dedicated account for a UAL user (called 

ualusr in this manual) who performs nothing but UAL calculations and who has estab- 

lished appropriate environment variables, most easily by using an appropriately-updated, 

code-managed, login script that is part of the distribution. This avoids the unwitting al- 

teration of the environment by other programs or shells or initialization routines. In this 

manual we assume that ualusr is performing all the set-up, checking out of codes, and 

calculations. The UAL user chooses a base directory, for example Nualusr, into which 

the UAL simulation(s) is to be installed. 

There is more than one way to obtain the UAL code, which is code managed by 

CVS7( Concurrent Version System). It is most convenient, if required access is not denied 

by a firewall, to checkout the code from the central CVS repository. This check out 

method allows the user to keep track of code changes. This manual assumes that the code 

is being acquired this way. An alternate approach uses the web, following instructions 

given at http://www.ual.bnl.gov. The user acquiring the code from the web will 

have to replicate the next few instructions as appropriate, before rejoining the subsequent 

discussion. The following instructions perforin an initial code checkout , assuming the Unix 

C-shell;t 
$ cd "ualusr 
$ setenv CVSROOT :pserver:anonymousQsunl..sns.bnl.gov:/home/ual/cvsroot 
$ cvs login 

CVS password: <CR> 
$ cvs co ual l  >& checkout.log 

t In this manual commands to be entered are always shown preceeded by the $ shell prompt; this prompt 
depends on the shell being used and is, of course, not to be typed in. The (required) line-ending carriage 
returns are not shown. 

- 12 - 
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Here anonymousQsun1. sns . bnl . gov : /home/ual/cvsroot represents an anonymous 

remote login (followed by user-supplied carriage return as response to the request for CVS 

password) to the central CVS code repository applicable at this date-it may change-and 

uall is the name of the particular version of the code being checked out. The steps per- 

formed in the CVS checkout are logged into checkout. log. The code is extracted to the 

subdirectory uall and to its subdirectories, along with supporting files and documentation. 

This may take a few minutes. 

Before continuing to compile and link i;he codes it is necessary to confirm that all 

required environment variables have been set correctly. Appropriate setup scripts and 

instructions are included in the code just checked out. An environment variable specifying 

the local architecture (preferably Linux) will be set by the appropriate set-up script.* 

On the local computer all directories contained in the UAL simulation being worked on 

(version uall in this manual) will be referred to a single, absolute address, named UAL 

or, to be recognized by the shell, as $UAL. For Linux architecture, the commands 

$ setenv UAL “/uall 
$ source $UAL/setup-linux-ual 

establishes the entire environment. At this time the environment variables (standing for 

directory names) are: 
UAL-ZLIB $UAL/codes/ZLIB 
UAL-P AC $UAL/codes/PAC 
UAL-TEAPOT $UAL/codes/TEAPOT 
UAL-ORBIT $UAL/codes/ORBIT 
UAL-ACCSIM $UAL/codes/ACCSIM 
UAL-ICE $UAL/codes/ICE 
UAL-DA $UAL/codes/DA 
UAL-SPINK $UAL/codes/SPINK 
UAL-MPI-PERL $UAL/tools/shortmpi 
UAL-EXTRA $UAL/ext 
SXF $UAL/tools/sxf 
SXF- ARCH $UAL-ARCH 

The setup script (and scripts it invokes) may also contain, as comments, requirements 

as to codes that UAL assumes will be finda,ble on the search path, and the least senior 

On SUN computers it is possible to have a pure g++ installation of UAL using GNU software included 
under Solaris-9 (and, presumably, later releases) provided /opt/sfw/bin is on the search path. It is also 
necessary for doxygen to have been installed. For aloxygen, which is a utility that produces documenta- 
tion automatically, installation should use $ . /configure --platform solaris-g++. Under Solaris the 
setup script (included in the release) is setup-solaris:9-ual. It defines the starting LD-LIBRARY-PATH to be 
/opt/sf w/lib. 
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version number that has been tested to be satisfactory. (An up-to-date Linux release, 

such as Red Hat 7.3 or later, has essentially all required code.) Detailed specification 

of required codes are given at h t t p  : //www . ual  . bnl . gov/vl/download. htm, along with 

brief installation instructions. In a few cases public domain code may be included with 

the UAL code checkout and build. 

Finally the code is compiled with output from make stored in make. log: 

$ cd $UAL 
$ make clean 
$ make >& make-log 

The make will take several minutes. To confirm its validity you can perform a case- 

insensitive search for the (absence of) string “ error ” in make. log. If the make succeeds, 

you may wish to gain some insight into the directory structure and build process by 

browsing this log file or, if the make fails, yoii can use the file to make a stab at diagnosis. 

A practical diagnostic procedure, for example to view temporary files that are removed 

in the full make, is to mimic the actual make by first changing directory by cutting and 

pasting to the directory shown in any line beginning make Cnl : Entering d i rec tory  

I .  . . ’ (where n is a small integer) and then cutting and pasting the subsequent compiler 

instructions one-by-one. 

Though long, the make output is less complicated than might first appear. The subdi- 

rectories of the top directory ($UAL) are env,”environment”, ext,  “extensions”, codes, 

“codes”, examples, “examples”, and doc, “dixumentation”. The Makef i l e  in $UAL steps 

down sequentially into each of these subdirectories and, if there is a Makefile, performs 

a make. Every Makef i l e  encountered recursively steps down through every subdirec- 

tory encountered at its own level. In this way all the code in the entire directory tree is 

processed recursively. Since all Makefiles assume default rules, they are all quite simi- 

lar. Each Makefile has a companion file (or rather one for each computer architecture) 

called Makefile.config that contains data specific to its system’s compiler. For ex- 

ample, the codes subdirectory contains among its subdirectories ACCSIM PAC, SPINK, 

TEAPOT, UAL and ZLIB, one for each of the simulation-capable modules currently installed 
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in UAL.t The Makefile.config file specific to ACCSIM (running under Linux architec- 

ture) is $UAL-ACCSIM/conf ig/linux/Makef ile . conf ig. Other configuration file names 

are constructed by making obvious transcriptions in this pathname. The Makef ile . conf ig 
file accesses its own pathname using its mat'ching environment variable. 

The general purposes for the codes in the various directories can largely by guessed 

from the directory names (which match the corresponding environmental variables given 

above.) Details will emerge in the sequel. The user wishing to browse a file referred to in a 

script can locate the file by using these environment variables. For example, note how the 

full pathname of the configuration file mentioned in the previous paragraph follows from 

$UAL-ACCSIM. Paths to C++ and Per1 code specific to ACCSIM are derived similarly. 

UAL also supports multiprocessor applications. Logically the instructions for installa- 

tion of the environment supporting these applications would be contained in a continuation 

of this section. But, because most users will use this environment only later, if at all, these 

instructions are deferred until Chapter 7. 

t The relationships among modules ACCSIM, PAC, SPINK, TEAPOT, UAL , and ZLIB is actually a bit more 
complicated than is suggested by this sentence. 



Chapter 4. 
Perl as Interface Language 

A user starting to use a specific accelerator simulation code probably expects to begin 

by studying its proprietary input language, in order to learn how to use the language to 

define the lattice and to specify the desired calculations. UAL handles lattice description 

similarly, in the form of conventional ASCII files, either MAD (the lattice description part 

only)? or SXF or ADXF. But there is no proprietary UAL command language. Instead, 

the simulation to be performed is specified by the statements of a Perl script. Standard 

references are Schwartz’ and Wall et the latter of which is the definitive Perl reference 

which, however, makes it fairly dense reading;. For exploiting the “object oriented” aspects 

Conway,lo is appropriate. The best reference dedicated to interfacing Perl with compiled 

languages, especially C and C++ is by Jentness and Cozens.” The m a n  pages perlxs,  

per lxs tu t ,  and xsubpp are useful for the same purpose, as is Srinivasan.12 

Detailed documentation can be obtained by using $ m a n  per1 which mainly provides 

a list of all the Perl m a n  files. After identifying per lvar  as the most promising source of 

information concerning Perl variables, one uses $ m a n  perlvar.  

Fortunately, it is unnecessary for the beginning user (or the advanced user either) to 

understand how Perl performs its control function. But the apparent effect of this control 

is that everything “appears to be Perl” even if the code being executed is some other 

language. For this reason the UAL user has t o  become at least somewhat conversant 

with Perl. Though this may cause some initial difficulty, it should soon have become 

comforting to be working with a highly-supported modern computer language rather than 

with a homemade, perhaps ambiguous, special-purpose input language. This power is 

perhaps most impressive when it comes to controlling multiprocessor applications using 

MPI. 

5- Because the MAD input languages includes both lattice description and calculation directives it is 
useful to have a term that describes just the lattice diescription pa.rt. For this purpose we will use the term 
SIF (Standard Input Format) in spite of the fact that the MAD format has evolved substantially from its 
correspondance with the original SIF spe~ification.~‘ So, in this manual the term SIF is to  be interpreted 
as the lattice description part of MAD, version 8. 

- lfi - 
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4.1. Elementary Perl 

This section contains a short description of the Perl language. It is too brief even t be 

called a “tutorial” but is intended to at least mention every language ingredient appearing 

in the examples appearing in subsequent sections. In the interest of making the UAL/Perl 

interface as “clean” as possible, only a restricted set of valid Perl syntax is actually used 

by UAL. In some cases usage that is deprecated (or at least not used) by UAL even though 

used in other Perl sources. When this situation arises this guide shows the (UAL)-preferred 

usage in the body of the text and includes alternative usage or clarification in a footnote. 

Perl is a “scripting language’’ that can. be used either as a standalone procedural 

programming language (such as C or Fortran) or as an object oriented languages (such as 

C++). Its syntax is much like C, but with features drawn from other languages, especially 

AWK. By practicing with Perl to perform si:mple Fortran-like calculations, the reader can 

acquire a useful introduction to the language (and then the courage to later insert minor 

postprocessing manipulations into the example scripts). 

4.1.1. Variables and statements 

Perl statements terminate with semi-colons ; and a single line is allowed to have more 

than one statement. Comments begin with #I and continue to the end of the line. 

The most visually striking notational aspect of Perl is that (single value) variable names 

begin with $ signs, as in $variablename. (So a C program with $ signs inserted in front 

of every variable name has a chance of being a valid Perl program.) Such a variable, called 

a scalar in Perl jargon, can stand for a real number or for a string or for a reference to 

something else, without the need for declaration as to which is intended. Some examples: 

$aScalar=42; # an integer 
$aScalar=3.14; # a real number 
$aScalar=”perl” ; # a string 

Perl implicitly interprets and converts $aScalar as it considers appropriate. Two multiple 

data types are also supported: arrays and hashes, both one-dimensional. 
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Array. An array variable is a list of scalars that have been grouped together so they can 

be manipulated as a single Perl variable. Array names are prefixed with the @ symbol, and 

an array is defined, that is, entered literally, by a comma-separated listt 8 as in 

@languages= ("perl" "f ortran" Itc++") ; 

These scalars will commonly be homogeneoiis (as in this example) but they need not be. 

For example some entries may point to othler things-that is the way more complicated 

structures, such as two dimensional arrays, c,an be established. Array elements are indexed 

by their sequential order (starting with 0, a8 in C). A particular value from the array is 
denoted by using its index enclosed in square brackets; so T 

my $f irst-language=$languages [Ol  ; 
$languages [Ol  ="per1 6" ; 

# assigns "perl" to $f irst-language 
# replaces "perl" by "per1 6" 

For understanding the UAL architecture it is useful to compare the support for one 

dimensional, sequential data types in Perl, Cff, and Fortran. This is done in Table 4.1.1. 

In C++ there are three one dimensional t:ypes: (fixed length) array, (variable length) 

standard vector template and list. With seqyential elements, random access can be a very 

fast operation. Some types are "dynamic" (meaning the number of elements can change) 

as examples in the table show. In Perl there is only one urray type but, even so, all of the 

C++ manipulations (and then some) are supported. But this comes at the cost of slower 

access, because the structure is implemented by doubly-linked list. This (along with the 

compiler/interpreter issue) is the sort of spleed/convenience compromise that drives the 

use of Cff for compute bound computation and Perl for interface implementation. 

Hashes (also known as associative arrays, or dictionaries, or two-column tables) have 

names beginning with % as in %hashname. Like lists, hashes contain multiple scalars, but 

these scalars are referenced not by sequential integers but by symbolic k e y s  (which are 

t Perl documentation distinguishes between the term array and the term list even though both consist 
of sequences of scalars. This distinction should probably be ignored. The literal representation of a list may 
include an array or hash but, if so, the elements of the array are simply "flattened" (broken out and strung 
together, comma-separated) into the enclosing list-t he original grouping is forgotten. 

In Perl documentation the phrase list context, is Idistinguished from the other possibility, namely scalar 
contezt. Here "context" means the type of the variable a function is expected to return. This is a kind of 
overloading in which a function & f m c  can return either a scalar or list depending on context. For example 
$x = &func expects a scalar and @x = &func expects a list. This distinction should probably be ignored 
during casual browsing of code examples, but it may have to be understood when writing new code. 

fT The scope-defining word my will be explained shortly. 
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Declaration 
Perl Fortran C++ 

my QanArray; Integer ,dimension(4) : :anArray int anArray[4]; 
vect or(int) aVect or (4) ; 

anArray/2,3,4/ 
Direct access $il=$anArray[2]; i l  = anArray(3) 

list(int) aList(4); 
int QanArrayl=2,3,4; 

i l  = anArray[2]; 

19 

4rray as stack 

Deletion 
from list 

Insertion 
into list 

strings serving as names for the entries.) Hashes are therefore lists of key,/vuZue pairs. Be- 

cause of this lookup mechanism the elements of a hash are unordered (and correspondingly 

slow to access.) The hash definition syntax customarily used by UAL ist 

i l  = aVector[2]; 
push QanArray,(5,6); aList.push-back(5); 

aList .push-back( 6) ; 
splice @anArray,2,3; aList.erase(aList .begin() 

+2, aList . begin() +5); 

aList .insert (aList . begin() 

# offset is 2 
# 3 elements removed 

splice QanArray,2,0, (9); 

# inserted list is (9) 
# offset is 2 +2,9 1; 

%perl-language = ("version" => 5,. 6, 
"applications" => 1003, 
"web site" => "http: //www .perl. corn") 

Here "version", "applications", and "web site", are keys to the heterogeneous va,ies 5.6, 

1003, and "http://www.perl.com" . 
Selection of the particular entry of hash %hashname whose key is "keyname" is ex- 

pressed using curly brackets, as in $hashname{" keyname" }. For example: 
my $apps = $perl-language{"applications"); # returns the application entry 
$perl-1anguageC"applications") = $apps + I; # increments the applications entry 

When describing an accelerator element quantitatively (or anything else for that matter) a 

numerical value is assigned to each of the parameters characterizing the element. It is very 

natural to store this information in a hash, from which the numerical value of the parameter 

is retrieved using the parameter name as key. Because of this self-describing feature, hush 

has been selected as the main variable type used in the UAL shell commands. Practically 

An alternative Perl synta.x (not used by UAL) fo'r definition of the same hash is 

%hash = ("vers ion" ,  5.6, " a p p l i c a t i o n s " ,  1003, "web s i te" ,  "http://www.perl. corn") 
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any data structure can be described by hash variables. Like Perl, UAL uses them as the 

structures on which objects are based. Hashes are too flexible to be built-in data types in 

compiled languages such as Fortran, C, and IC++ but they can be implemented by special 

classes in these languages. 

The reader wishing to learn the power ad hashes in as elementary context as possible 

can read the documentation for AWK,13 the language from which Perl copied this feature. 

Support of multidimensional arrays requires the use of references, a topic to be dis- 

cussed in section 4.1.4. What with the possibility of multiple nesting, the syntax used 

to select a single element from such a structure can be a bit obscure, but one generality 

is worth remembering: a scalar variable name always begin with $, even if the scalar is 

identified by its index in array, or by its key in a hash. 

Perl has many "built-in" variables. For UAL the important ones are %ENV, @ARGV and 

@ARG (which UAL refers to by its equivalent name @-).t These variables are evaluated 

automatically and are available globally, unqualified by package names (a term to be 

explained shortly). Documentation defining the names of Perl's implicitly-defined variables 

is obtained by typing man perlvar.  

4.1.2. Subroutines 

The primary mechanism for passing arguments to subroutines is based on the built- 

in array variable @- (which contains the arguments). UAL uses one or the other of two 

equivalent c a d  

subr($a, 1) ; # arguments a r e  $a and 1 
subr("B"=>l, "A"=>$a) ; # subroutine deciphers arguments f r o m  hash 

t Perl has duplicate, abbreviated names for its built-in variables. For example 0- is a valid abbreviation 
for 0ARG. Use of Perl built-in variables other than %EN\[, QARGV, and 0-, (and especially their abbreviated ver- 
sions) is deprecated by UAL because they complicate the interface unnecessarily, perhaps impeding eventual 
migration to a more disciplined interface language. For postprocessing applications the user is, of course, 
invited to use whatever features of Perl seem useful. 

Perl subroutine names (optionally) begin with &; the option is related to the way arguments are 
passed to or from the subroutine. So there are two other calls, also equivalent to the two listed above. 
Assuming @-=($a,l), they are &subr; and &subr ($a, 1);. That is, the presence of the prefix & implies that 
the arguments are to be taken from 0- if they are not given explicitly. The & prefix must be suppressed 
when the subroutine is defined. The versions given above are favored by UAL so that neither 0- nor & (as 
function name prefix) is visible at, the interface level. 
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The second version (used prominently in UAL) relies on code built into the subroutine 

to save the argument as a hash from which the actual arguments can be sorted out. 

This syntax has two major advantages; the argument order does not matter and it is not 

necessary to provide all arguments; argumeints that are not provided are either not used 

or are assigned default values. 

For object orientation, if a subroutine is to be a method of a particular class of objects, 

it is necessary to provide this association. This is done by passing a reference to the class 

as the first argument of @-. For example, consider the subroutine call 

$shell->hsteer(t ladjusters” => “^ki.ckh”, ”detectors” => “^bpmh”) ; 

which calls an orbit-smoothing method hsteer from the ALE: : U I  : : Shell class. 

The class reference is automatically included as the first entry of @- and the other 

arguments specify families of adjusters and aietectors. A few lines of the hsteer definition 

are 

sub hsteer 

my $this = shift; 
$this->code->hsteer (a_, . . . ; 
... 

In Perl, when the “object” of a “verb” such as shift is not written, the implied object is 

@-. So the first statement here “shifts off” the class reference, saving it as $this. The 

next statement passes the remaining arguments to another subroutine. In this case the 

arguments are the names of adjusters and detectors (encoded using “regular expressions” 

as will be explained in section 6.2) to be used in the algorithm. A fully-detailed example 

of argument passing is contained in code fragment @ in section 6.4. 
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4.1.3. Modules, packages/name-spaces, scopes 

Like any Perl program, every UAL progrxm has a Perl main routine, which is contained 

in a file with a name such as simulation.pl-extension . p l  stands for “Perl”. This 

“program” provides all input directions to t,he simulation. There are also modulest such 

as modulename.pm with extension .pm, for “Perl module”. Perl code in such modules is 

either “made available” by the Perl command use, or immediately “sourced” (i.e. read in, 

or imported) by the require  command. A statement such as 

us e l i b  ( ‘I $ENV(UAL-EXTRA)/ ALE/api I ’  ) ; 

near the beginning of a UAL script directs Ped to use the environment variable $UAL-EXTRA 

as part of the name of a directory, in this case $UAL/ext/ALE/api, to be added to the Perl 

search path for the module. For this line and several examples of use see code fragment @ 
in section 6.2. In those lines of code line #5 makes accessible F i l e  : :Path from the standard 

Perl release, and line #I2 makes accessible th.e code Ale : : UI : : Shel l  (Accelerator Library 

Extensions, User Interface) which is provided by UAL. 

Another term, similar to, but not really equivalent to module, is package; while getting 

started a certain fuzziness concerning the distinction between module and package is to be 

expected.$ It is probably satisfactory to treat the terms “package” and “name space’’ as 

synonyms. Within any one package each variable name has to be unique, but each package 

has its own independent name space. The puirpose of allowing more than one name space is 

to make it easier to avoid unwitting name claishes, thereby allowing the casual introduction 

of brief variable names. 

To be used globally a variable name such ,as $vname needs to  be qualified with a package 

name. So a variable $vname introduced in mainprog.pl would be accessed globally 

by its “fully-qualified name” $main: :vname‘i and the global name for a variable $vname 

introduced in package modulename. pm would. be $modulename : : vname. This accounts for 

the double colon : : notation appearing in the examples shown previously. All variables 

t Beware: the term module has more than one meaning in this manual, as will be cla.l-ified gradually. 
It is considered to be good form for modules and packages to coincide, but Perl does not enforce this- 

the absence of this discipline may have been required for backward compatibility as Perl imposed the package 
mechanism on the pre-existing module mechanism? 

Just one exception: the name $ m a i n :  :vname can he abbreviated to $ : : vname, only in the case of variable 
introduced in the m a i n  package. 
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introduced discussed so far are available globlally using their fully qualified package-related 

names. They are therefore not “hidden”. The use package directive (to be discussed 

below) allows the use of the briefer, unqualified name. 

A term related to “name space”, but not; at all equivalent, is “scope”. As a variable is 

defined, its scope, which restricts its access aiad specifies its access mechanism, is part of its 

definition. Variables introduced so far have global scope. In Perl there are (primarily) two 

restricted scopes: my-scope, which is also referred to as “lexical-scope” or as “personal” ; 

and local-scope, which is also referred to ats “temporary”. UAL does not use locally- 

scoped variables.? 

A my variable is declared by a statement; my $varname; . The space of these names is 

completely disjoint from the package-related! names. A my variable is said to be lexical, 

meaning “if you can read it you can use it” where you can only read from the code block 

(enclosed in curly brackets { }) in which it is introduced, or in the whole file, if the variable 

is not declared within a block.$ The scope OF a my variable is often as small as a few lines 

but it can be as great as the enclosing file, ‘but no greater. A my variable name declared 

in a routine can only be interpreted in its called subroutine if the subroutine has been 

declared within the calling block. So, if the variable is required in a subroutine, it has to 

be passed explicitly and the values of my variables declared in subroutines also have to be 

returned explicitly. In spite of these limitations, for a large program (like UAL), because 

they are private, inaccessable by any package-related naming mechanism, the use of my 

variables is recommended wherever possible. 

By default the code starts in package main but one can “switch” to package Whatever; 

by issuing the directive package Whatever; . Variables introduced from then on belong 

to the name-space Whatever until there is another switch. A variable $foo previously 

introduced in some other name-space Other must be referred to as $Other: : foo .  To avoid 

t Warning: contrary to what one might expect, the Perl operator l o c a l  (not used by UAL) does n o t  
declare a local variable. Rather, when applied to at pre-existing (global) variable, l o c a l  simply squirrels 
away the current value of that variable, in order to later restore the saved value automatically at the end 
of the block. l oca l  does n o t  create a local variable; in fact it does not create any variable at all. Rather 
it makes a pre-existing global variable available, and writable, but the original value will be restored upon 
exit from the block. As it happens, unlike m y  variables, local variables are implicitly available in subroutines 
called from within the block even if they have not been passed explicitly. 

On a programmable hand calculator, a lexical variable would be recoverable from its remembered posi- 
tion on the visible stack, rather than from having been assigned a named memory location. 
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the need for qualification one can switch back and forth between packages while remaining 

in the same file. For example, after directive package Other; the same variable could 

be referenced just as $foo. It is probably best to avoid using this freedom however, as it 

can be confusing, and hence prone to error. Because of possible ambiguity, Perl provides 

the option of issuing the use strict; directive. After this directive all package variables 

have to be fully qualified. For safety use strict; appears at the beginning of most UAL 

modules. When making ad hoc changes to the code one may be tempted to introduce 

a global variable, such as $myvariable, without declaring it to be a my. In the use 

strict regime this would trigger the error message “Global symbol ‘ ‘ $myvariable j j 

requires explicit package name”. Naming the variable $: :myvariable avoids this 

error by explicitly assigning the global variable to the main package. Better yet is to avoid 

introducing global variables for fear they will be forgotten and later cause trouble. 

4.1.4. References 

This sub-section is very much a continuation of subsection 4.1.1 as it expands the discus- 

sion of variables. For elementary use of Perl as a procedural language, the new method of 

specifying a variable might seem to be little ‘more than an optional syntax, which the user 

could simply decline to employ. But for object-oriented application of Perl the notion of 

reference is essential. UAL exploits the reference mechanism to allow user scripts to ig- 

nore scope issues when addressing object variables and methods. When addressing object 

variables and methods the UAL-provided shell uses references to allow the user to ignore 

scope-of-variable considerations. 

Within a Perl program a single scalar d.atum has at least three sorts of identity. It 

has its actual value, say 3.14, it has its variable name, say $pi, and it has its location in 

memory. For elementary purposes the user is shielded from the need to be aware of the 

third of these identities. But to support object-orientation it turns out to be necessary 

to name this location (thereby increasing th.e number of identities by one.) The storage 

location is symbolized by \$pi, which is known as a reference, or sometimes as a hard 

reference (in which case $pi is itself referred t,o as a soft reference.) The possible references 

are 

$rs = \$s; # reference to scalar $s 
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$ra = \@a; 
$rh = \%h; 
$rf = \&f ; 

# reference to array @a 
# reference to hash %kt 
# reference to subroutine &f 

One can start to understand the role of references by considering an alternate Perl 

notation for defining an array (frequently used in UAL but not previously mentioned in 

this manual). An example of this syntax tak:en from code fragment @ in section 6.2 is 

my $qSigB = C0.0, 0.0, -2.46, -0.76, -0.63, 0.00, 0.02, -0.631; 

This defines an array (of multipole coefficients in this case) having the values shown. But 

the name of the array is not $qSigB; rather $qSigB is a reference or pointer to the location 

of the array which, in this case, is said to  be “anonymous” or ‘(reference-identified”.t 

This shows that “references” can identify multi-element structures. (In fact, they enable 

dynamic memory allocation which is their main virtue.) When an array is to be populated 

one element at a time it is convenient to start with an empty array using my $rarray = 

[I;. 
To retrieve the data pointed to by referfence $rp it is necessary to “dereference” the 

reference, by $$rp or by @$rp or by %$rp depending on whether it is a scalar, an array, 

or a hash being retrieved. Without this distinguishing notation Perl would not be able to 

determine the extent of the data to be retrieved. 

There is a short-cut notation for selecting individual elements of reference-identified 

arrays without the need for explicit dereferencing. An element can be selected from the 

array defined two paragraphs back by $qSigB-> C21 which, in this case, would return the 

value -2.46. 

The notation for creating an anonymous hash uses braces instead of square brackets. 

For example, an anonymous two-element hash is created and referenced by 

The short-cut notation for selecting an element from such a reference-identified hash is 

$rhash->“{k2}” which, in this case, would p:roduce “v2”. When a hash is to be populated 

T One has to tolerate the inelegant syntax of Perl which (like C) fails to distinguish between a scalar 
variable name and a reference. Hence, for example, the statement $p=\$q makes sense; it assigns reference 
\$q to reference $p, both of which are therefore both x a l a r s  and references. Perhaps this absence of explicit 
syntax for references is the reason that they are not referred to as pointers in Perl documentation? 
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one element at a time it is convenient to start with an empty hash using my $rhash = 

0; .  
To support object orientation there needs to be a mechanism for representing structures 

more complicated than arrays or hashes. References can be used for this purpose. Without 

going into detail, the Perl keyword bless  associates a reference with the particular package 

that is capable of digesting the contents of the structure that is referenced. An example is 

given in the block of code below @ in section 6.2. 

4.1.5. Regular expressions 

It is often necessary to perform some action on only a subset of the elements in an 

accelerator. Some examples of actions a simulation program performs on all elements of 

such “families” are: 

0 element subdivision 
0 retrieval of parameter values 
0 update of parameter values 
0 establishment of detector families (such i3S BPM’s) 
0 establishment of adjuster families (such i$S kickers) 
0 print out of lattice parameters 

In some simulation codes, provision for specifying such a family of elements is built into 

the lattice description file by a flag assigned to elements in the particular family and to no 

other elements. For example in SIF (Standard Input Format) the type=A flag is assigned 

to all members of family A. In some cases such a family corresponds to actual hardware in 

the accelerator (magnets on a single bus for example) but usually assignment to families is 

best left to the tuning algorithms of the control system. In UAL philosophy it is therefore 

inappropriate to burden the lattice description with “hard-wired” family assignment. 

In UAL a family is specified by the “explicit” listing of the names of all the elements 

that, for some immediate purpose, are useful1.y regarded as belonging to the same set. The 

word “explicit” is placed in quotation mark:s because the so-called “regular expression” 

mechanism is used to specify families and the element selection by regular expression 

may not look all that explicit to a reader unfamiliar with regular expressions. A regular 

expression is a highly-abbreviated shorthand ascii string that has been tailored (consistent 

with well-defined rules) to match the names of all elements in a family and to fail to match 
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any other element name (of elements present in the ring.) By this time regular expressions 

have come to be a powerful and indispensable part of most computer languages. In this 

manual the mechanism will be clarified mainly by examples. 

The consistent naming of lattice elements has always been an important consideration 

in writing lattice description files. It is important for conveying the intended purposes for 

the various elements in the original design ;and eventually every element needs a unique 

“site-wide” name by which elements in external models are associated with elements in 

the tunnel. The UAL mechanism for selecting families of elements makes naming-scheme 

discipline all the more important. It would be convenient for all elements of a family to 

have the same name; for example, all quad lcorrectors on a harmonic corrector bus could 

have the name QDH. But this is too much to ask in general as it fails to allow for “overlap” 

of the different sorts of family that need to bte defined. The regular expression mechanism 

permits the efficient selection of elements even in the face of such type overlap, but the 

mechanism is succinct only if a consistent naming scheme is carefully respected. As a 

last resort a family can, in fact, be defined within UAL as a really explicit list of all of 

its elements. An example of this will be given below. When first encountered the regular 

expression approach may seem awkward to the user but it is a “feature”, not a “bug”, as 

it solves a really hard simulation problem-how to specify families without the need for 

ad hoc tampering with the lattice description language? Such tampering frequently leads 

to errors and always erodes portability. 

An example of the use of regular expressions for selecting a set of lattice elements is 

code fragment @ in section 6.2. Because this example uses an actual SNS lattice file @ , 
further explanation of regular expressions will1 continue in connection with explaining that 

code. The reader is encouraged to jump to that explanation and then return. 

4.1.6. Printing out results 

There are various mechanisms for outputting results. They can be printed to standard 

output or to a file, either from Per1 or from C++. It is conventional for the Perl scripts 

of UAL to issue progress reports announcing the commencement of major steps in the 

simulation. These progress reports are generisted by lines like 

p r i n t  ”Create the  ALE: :UI: :Shell  instance (”, --LINE--, ‘l)\n”; ##E 
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which is line #15 in listing @ in section 6.2 (the example script to be documented first 

in this manual.) Incidentally this line shows how Perl-specific information (in this case 

- LINE-, the line number in the script) can be output. Usually it will be a string or a 

Perl variable, such as $aScalar, or a Perl built-in, such as $- that is output in this way. 

(The symbol L I N E -  is peculiar-looking blecause it relates to the script as a file rather 

than to its execution as a Perl program.) (One convenience is the ability to interpolate 

special variables into strings, as is illustrated by the following fragment of Perl code: 

my $name = t t t e s t ' t ;  
p r in t  "My name i s  $nametl,"\n"; 
p r in t  'My name i s  $name ,"\n"; 

which produces output 

My name i s  t e s t  
My name i s  $name 

-with double quotes the value of the variable $name is interpolated, with single quotes it is 

not. To get printout under controlled-format the command pr in t f  (which is equivalent to 

p r i n t  sp r in t f )  has to be used. These are identical to C-commands of the same names. 

The opening and closing of files proceeds as in any other computer language. To write 

from Perl to a file the file must first be opened with a statement such as? 

open(OUTPUT, '>output/dat '> I I die  'Cannot create  f i l e  tloutput/dat". ' ; 

which fails with an error message if the file cannot be created (for example because the 

directory output does not exist or is not writeable.) Note that the access mode (read, write, 

or append) begins the string containing the filename. Perl refers to the name "OUTPUT" 

as a file handle. Variables $x and $y can then be written to the file with defined format 

using a command such as 

pr in t f  OUTPUT ("%6.3f %6.3f I f y  $x, $y>; 

An example of a file handle being represented by a string with an interpolated variable is 

line #I91 in code fragment @ of section 6.2. Note also the use of ".') (dot) as the string 

t The symbol I I stands for or in Perl. As it happens o r  can be used instead of I I in this context and is 
even preferred style, according to Perl documentation, because it has lower precedence (i.e. reduces the need 
for placing adjacent elements in brackets). The symbol for and is & or and. 
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concatenating operator when filename . /ont / tes t / f  o r t  .8 is formed from ‘ ‘ . /out/ 

. $job-name . ‘ ‘ / f o r t  .8 ’ ’. (The string ‘ ‘test’  ’ had been assigned to variable 

$job-name earlier in line #4.) An example of formatted output appears a few lines later 

(line #198) in the same code fragment. 

A more fully spelled out example of saving results, which exhibits the output of lattice 

parameters at specified lattice locations is given in section 6.3. Other than these brief 

comments, the formatting of output is too complicated for useful discussion in this manual. 

There are many samples to mimic in the examples. 

Finally it can be mentioned that print t;tatements can also be introduced into Cff 

code, for example for debugging purposes, or to obtain ad hoc access to an otherwise 

inaccessable variable value. An example line of code is 

cout << “desired chromaticit ies a r e  It  << mux << It  << muy << ‘ ‘ \ny ; 

which sends output to standard out. Many other examples are available in the UAL source 

code. Of course the Cff code has to be recompiled for any added lines like this to effective. 

4.1.7. Issuing system commands 

There is another benefit coming from the use of a scripting language to control the 

simulation-it is possible to issue system commands from within the script. An example 

of this is code fragment 0 in section 6.2. The relevant lines of code are 

my $job-name = “ t e s t ” ;  
use F i l e  : :Path; 
&path( [ ‘ I .  /out/” . $ j ob-name] 1 0755) ; 

Here the variable $job-name contains a string ‘ ‘ tes ty  that is concatenated (the dot 

(.) operator) with the string ‘ ‘ . /out/  of a 

directory which will be written to in a later command. The mkpath command (from 

within the F i l e  : :Path module) establishes the directory, with permissions specified by 

the final argument.t Detailed documentation for F i le :  :Path and mkpath (and all other 

Perl routines) can be obtained from Perl documentation; for example with $ man perlmod 

and $ man perlmodlib. 

to  form the pathname ‘ ‘ . /ou t / tes t  

t If the mkpath command had not been included Perl would have issued the error message “can’t create 
./out/test,/log at /export/home/ualusr/development~uall/ext/ALE/api/ALE/UI/Shell.pm line 32”, which 
is the first occurence of writing to that directory. 
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4.2. UAL file directory structure and packages 

Because there is a near one-to-one correspondance between packages and files there can 

be (within UAL) a standard relation between filenames and package names. Examples of 

this convention can be observed by the following instructions, which are followed by the 

resulting output: 

$ cd $UAL-ACCSIM 
$ find . -name ’*.pm’ -print I xargs grep “package Accsim” 

./api/Accsim/Bunch.pm:package Accsim::Bunch; 

./api/Accsim/Facade.pm:package Acc:sim::Facade; 

./api/Accsim/Plot.pm:package Accsim::Plot; 

./api/Accsim.pm:package Accsim; 

./config/linux/Accsim/MakeMaker.pm.:package Accsim::MakeMaker; 

./config/sun-gcc/Accsim/MakeMaker.pm:package Accsim::MakeMaker; 

Note that package Accsim resides in file $UAL--ACCSIM and “sub-packages”t Accsim: :Bunch, 

Accsim: :Facade, and Accsim: :Plot are in correspondingly-named directories. (Note also 

that the Unix command used above can be modified to 

$ find . -name ’*.someextension’ -print I xargs grep ”some text“ 

to search for “some text” in all files having extension “someextension”. Most of the filename 

extensions appearing within the UAL environment are spelled out in Appendix B.2.) 

4.3. Perl extensions 

Even though all compute-bound UAL processing takes place using Cff code (archived 

into libraries) overall control of any simulation is managed by Perl code. The codes required 

to support calling C++ routines from Perl are known as P e d  extensions. (The converse 

operation, embedding Perl within C++, does not occur in UAL.) All data structures used 

within the Cff code are declared in .h or .hh header files. Only some of the variables 

declared in these files are used for input to or output from the C++ routines. But the 

structures that are used as input or 0utpu.t need to be unambiguously related to the 

corresponding structures within the Perl program. Apart from enabling the calling of 

The reason “sub-packages’’ is in quotation marks is that, in Perl, this package naming convention is a 
bit artificial. It suggests that there is some kind of inheritance established automatically from, say, package 
Accsim to, say, package Accsim: :Bunch. In fact, if such inheritance is required, the programmer would have 
to set it up using the @ISA array. The packaging just restricts variable names. 
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C++ routines, the main task for the extension code is therefore to translate Perl outputs 

into C++ inputs and then to translate C++ return variables into variables acceptable by 

Perl. The data describing these required translations is contained in files with extension 

. xs for external Subroutine. There are tools available to establish such data mechanically 

for simple enough structures, but for more (complicated structures it has to be done “by 

hand” and can be a formidable task. 

Within the $UAL directory tree, all sujch .xs, files are contained in subdirectories 

called ap i  , which stands for Application Program Interface. These . xs files are converted 

to C programs having . c extensions by a Perl utility called xsubpp. 

This is the mechanism that gives an entire simulation the appearance of occuring within 

a Perl script. Since the file interrelationships supporting this are complicated, it is not an 

area in which casual recoding, or even browsing, is recommended. On the other hand, 

modification of the Perl code should be rout-ine and (perhaps temporary) modification of 

the C++ code should not be unduly feared. 



Chapter 5. 
Online Documentation of Simulation Methods 

Online documentation is available at h t t p  : ,//www .ual  . bnl . gov. Especially useful for the 

reader of this guide is to follow the links, under UAL 1.x: Documentation, ALE : UI, then 

Shell. This provides technical details for the basic user shell (or faqade) which accesses 

the following UAL libraries and extensions: 
setMapAttributes (set dimensionality) 
readMAD (read in lattice) 
addsplit (segment element) 
addAperture (shape and size of vacuum chamber) 
addMap (for elements described by maps) 

0 use (select lattice from input file) 
0 writeFTPOT (produce file processable by Fortran version) 
0 addFieldError (field imperfection) 

addMisalignment (position imperfection) 
setBeamAttributes (adjust beam properties) 

e analysis (perform complete linear lattice analysis) 
0 map (produce truncated map) 

survey (calculates and prints global geometry) 
twiss (calculates and prints all standard lattice fimctions) 
run (tracking) 

Most of these methods will be exercised in the examples in Chapter 6. 

Another link, Bunch, defines the attributes of the particles in a bunch (n;,p,, y, p,, et, dp, m, E )  

and shows how they are set and retrieved. 

Also appearing in the examples will be correction methods, that are not yet described 

in the online documentation: 
hsteer (horizontal steering) 
vsteer (vertical steering) 
ftsteer (first turn steering) 
tunethin (tune adjustment) 

0 chromfit (chromaticity adjustment) 
decouple (decoupling) 

These are defined in $UAL/codes/TEAPOT/api/Teapot /Main. pm along with their support- 

ing routines. 
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Chapter 6. 
Annotated Examples 

6.1. Introduction 

The simulation scripts for this manual are mainly contained in sub-directories of the 

directory $UAL/examples. t Of these, the first, to be referred to as the “basic example”, 

is the most important as it includes most of the commands that would be present in any 

simulation. Routine steps that have been explained in this example will not be repeated 

in subsequent examples. The first few examples are closely related, and represent an 

evolution from using the code as delivered, through making minor changes, to establishing 

a personalized, independent environment that can be used to reliably perform more extreme 

surgery on the delivered code, and finally to incorporating maps for special elements. These 

examples are all based on the same SNS lattice. The other examples illustrate some of 

the special features of UAL, and introduce other accelerators. Since only code fragments 

are exhibited in this manual there will inevitably be “loose ends” (apparently undefined 

quantities for example) that the reader can only sort out up by bringing up the complete 

code in a text editor. 

Starting lattice files and other input information are in directories named data. For 

SNS the starting file is $UAL/examples/UI/data/f f-sext-latnat .mad. There are also 

RHIC and LHC examples based on SXF input; these are discussed in section 6.6.t 

In using a computer code having any flexibility whatsoever a certain amount of detec- 

tive work is required of the user. Apart from getting help from an expert or trial-and-error 

running of the code-which one will always resort to eventually for confirmation-there 

are two sources of information: the (often ambiguous or obscure, like the present guide) 

f There are example scripts in directories other than $UAL/examples. They are available for browsing 
and testing, and they function correctly when run, but they may rely on specialized shell features that are 
considered to be obsolete. 

Some scripts involving RHIC have complicated input descriptions that cannot be traced because they are 
derived using RHIC databases and dedicated and complicated “filters” not included in the UAL distribution. 
These descriptions, which are also Per1 scripts, have to be regarded as yet another (though archaic) input 
format. They are discussed further in section D.2 to illustrate the UAL lattice object model (SMF). 
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documentation or the source code (assuming; it is available). Even though the source code 

is, by definition, accurate, most users are unwilling to follow the latter route. 

Because UAL supports the flexibility of each of a multiplicity of codes the problem of 

documentation is all the more acute. But UAL is structured in such a way that there is a 

source of information intermediate between text documentation (such as this manual) and 

Cff source code; it is the Perl code of the numerous examples included in the distribution. 

Like source code, this source of information is, by definition, accurate. The serious user of 

UAL has no real alternative to  looking at this Perl code to figure out how the environment 

is to be used. The annotation supplied with the following examples is intended to provide 

help in this endeavor. 

In an ideal world the UAL code would be architecturally and stylistically homoge- 

neous, to improve its intelligibility. In fact, having evolved over quite a few years, the 

organization of recently developed code may seem to be, and is, stylistically inconsistent 

with modules developed earlier. For example most of the examples in this guide do not 

need to rely on the Element-Algorithm-Probe framework mentioned in a lengthy footnote 

to section 1.2 and in section 6.7. The prime purpose of this framework is to support ex- 

tensions, which are typically quite specialized. It is expected that mastery of the material 

in the present guide will help to make using these more advanced applications straightfor- 

ward. The recently completed FastTeapot code, explained in section 6.7, is an example 

of such an extension. Installation and checkout of another extension, MPI (Message Pass- 

ing Interface,) is described in Chapter 7. Working accelerator simulation examples that 

use multiple processors will be included in the distribution shortly, and a simulation of 

injection “painting” will also be included. 

The online C++ documentation is currently being mechanically upgraded using dozy- 

gen and swig, software tools that are continually being improved. 



6.2 : Annotated Examples: Basic example 35 

6.2. Basic example 

To run the first example, a simulation of SNS with realistic errors, enter 
$ cd $UAL/examples/UI; per1  shel l -sns .pl  

expecting to see the following outputt$: 
mkdir . /ou t / tes t  
Create t h e  ALE: : U I :  :Shel l  instance (15) 
Define t h e  space of Taylor maps (23) 
Read MAD input  f i l e  (33) 
Define aperture  parameters (46) 
Se lec t  and i n i t i a l i z e  a l a t t i c e  (78) 
Define beam parameters (92) 
Linear ana lys i s  (100) 
Add systematic e r r o r s  (119) 
Add random e r r o r s  (141) 
Track bunch of p a r t i c l e s  (175) 
End (202) 

These lines are issued by the code to indicate its progress, as can be seen by correlating 

with line numbers in the script shell-sns .p l ,  fragments of which will be displayed in this 

section (with blank lines and comments suppressed), starting with the first several lines 

which are listed next: @ 
#! /usr /bin/per l  #l 
my $job-name = "test"; #3 
use Fi le : :Path;  #5 
&path( [" . /out/ll . $ job-name] , I, 0755) ; #15 
use l i b  ("$ENV{UAL-EXTRA)/ALE/api") ; #12 
use ALE::UI::Shell; #13 
p r i n t  "Create t h e  ALE: : U I :  :Shel l  instance (", --LINE--, ")\n"; #15 
my $ s h e l l  = new ALE::UI::Shell("print" => 'l./out/ll . $job-name . "/log"); #17 

Here line numbers in the script have been appended to each line as #1, #3, etc. These 

numbers are included for reference purposes in this manual; they would not normally 

be present but, as it happens, since they are expressed as comments (everything fol- 

lowing # on the same line) their presence would have no affect on the script. The 

substantial accomplishment of @ is contained in line #17 which has defined the "user 

shell" to be an ALE: :UI: :Shell. To find this, line #I2 instructs Perl to look in 

$UAL-EXTRA/ALE/api, which is to say, of $UAL/ext/ALE/api, relative to which the script 

t The numbers in parenthesis are line numbers in the Perl script. These numbers were arranged to be 
present for this particular script just for purposes of reference in this manual. (See -LINE- in code 
fragment . ) Normal scripts would not issue these numbers. For reference elsewhere in the manual code 
fragments are identified by circled numbers like 0 , dong with the number of the section the fragment 
appears in. 

To follow the code more closely and examine values of relevant variables it is possible to step through 
the Perl script line-by-line using a Perl debugger, which is invoked by $ per1 -d shell-sns . p l  or $ ddd 
--per1 shell-sns . pl .  
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pathname is ALE/UI/Shell .pm.t This script initializes many UAL objects: shell, code, 

lattice, beam, orbit, bunch, space, map,  twiss,log, and constants, all objects that the shell 

needs to access as Per1 commands are interprleted and executed. Most of this will be spelled 

out more fully below. 

The next statement in shell-sns . pl declares the maximum order of truncated power 

series to be 5 ,  (also known as “dodecupole order”); @ 

$shell->setMapAttributes(”ordeP => 5); #25 

and statement @ specifies the lattice input file; 

$shell->readMAD(”f ile” => ‘ I .  /da.ta/ff-sext-latnat .mad”) ; #35 

In this case the lattice is described by the mad file ff-sext-latnat .mad, a few lines of 

which are excerpted next, to give a general idea of its content: @ 
! ff-sext-latnat .mad 

... 
Brho := 5.6573735 ! 1.0 GeV (for 1.3 GeV: factor 1.1981566) 

lbnd := 1.5 
lq := 0.5 
LSEX:=0.15 
LREF: =l .7 

03 : DRIFT, L = 6.25 
031 : DRIFT, L = 03[L1/5 

ANG:= 2*PI/32 
EE := ANG/2 
BL: Sbend, L=lbnd/2, Angle=EE, E1=0., E2=0. 
BR: 
BND: Sbend, L=lbnd, Angle=ANG, El=O.O, E2=0.O 

KD:=-4.94176/1.1981566 
QDH : QUADRUPOLE, L = lq/2, Kl = KD/Brho ! focusing arc quad (21Q40) 
QFH : QUADRUPOLE, L = lq/2, Kl = KF/Brho ! defocusing arc quad (21440) 
QFBH : QUADRUPOLE, L = lq/2, Kl = KF/Brho ! large focusing arc quad 
QDMH : IJUADRUPOLE, L = lq/2, Kl = KMAT/Brho ! “matching” quad (21Q40) 

... 

... 

... 

Sbend, L=lbnd/Z, Angle=EE, E1=0., E2=8. 

... 

... 

t The ALE: :UI : :Shel l .  pm script itself depends on other libraries that it accesses with the command 
use lib (..., “ENV{ $UAL-ZLIB}/api” , “EN\‘{ $UAL-TEAPOT}/api” , “ENV{$UAL-EXTRA}/PAC/api” );. 
These libraries, for example, make UAL tools such as power series capability available. These capabilities 
will not be discussed at this point. It is more appropriate to defer this discussion to section 6.5.1 where the 
map generation features of UAL are exercised. 
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... 
QDHl : MARKER 
QD : LINE = (QDHl,QDH,QDH,QDH2) 
QF : LINE = (QFHl,QFH,QFH,QFH2) 
... 
VSlD:=-2.891275 
SlD: SEXTUPOLE, L=LSEX, K2=VSID 

RFl : RFCAVITY, L = LREF, HARMON = 1, VOLT = 0.0 

ARC : line = (ACF,ACFM,ACSl,ACS2,ACS3,ACS4,ACF,ACFL) 
INSERT : line = (SC,OZ,SCM) 
SP : line = (INSERT,ARC) 
RING : line = (SP,SP,SP,SP) 

... 

... 

Because this UAL example reflects the realistic complexity of an actual (SNS) lattice, 

the script is fairly long so, for brevity in this manual, lines that are pedagogically repetitive 

will not be shown. The line numbers shown refer to the actual file. The reader is expected 

to read along in the actual file using a text editor, tolerant of minor line numbering 

disagreements that may have occurred due to reformatting or line-wrapping. 

Since particle tracking is to be done by numerical integration, it is necessary to specify 

integration intervals. The intervals can be full elements, or quarter elements ( O ‘ i r “  => 

1) or eighth elements (*‘ir“ => 2), and so on.? It is often adequate to treat entire 

quadrupoles as single kicks, especially when the quads are, in fact, represented as paired 

half-quads in the lattice description, as is the case in the lattice being studied. For some 

purposes overly fine splitting is “apple polishiiag” , unjustified by the accuracy of the element 

descriptions. But for the exact comparison of‘ results from different codes a fine subdivision 

is appropriate when computation time is not an issue. Deciding the extent to which any 

particular element is to be subdivided beloiags to the domain of the tracking engine to 

be used rather than to the domain of the lattice description. This is why the subdivision 

has to be taken care of in the present Per1 script. To specify which elements are to be 

subdivided the regular expression mechanism introduced in section 4.1.5 is used: @ 

The name “ir” is archaic; it derives from the common circumstance that intersection region quadrupoles 
are most sensitive and most in need of fine subdivision. In future this usage will be specific to TEAPOT 
and a corresponding parameter will be known as a “complexity index” or as a “divisibility index”. 
Different simulation modules may interpret this parameter differently. The fourfold subdivision is used by 
TEAPOT because it permit,s a near-optimal, unequal-interval kick algorithm, somewhat more accurate than 
uniform interval splitting. The same unequal interval splitting is available in MAD. Unlike any thick element 
truncated map, these algorithms preserve exact symplecticity. 
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$sheLl->addSplit("elements" => "-(q[df]hlq[fdl [lmclhIqfbh)$", "ir" => 2) ; #40 
$shell->addsplit ("elements" => "-(bnd)$", "ir" => 2) ; #42 
... 

The cryptic expression ""(q[fd] [lcl h I qfbh) $" is the regular expression specifying the 

quadrupoles that are to be subdivided into eighths (because "ir" => 2). 

Only enough comments will be made about this process to give the general idea of how 

regular expressions work. (i) For coinpatability with most simulation codes, UAL element 

names are case-insensitive. Uppercase names are converted to lowercase before regular 

expression matching. Hence, for example, "QFBF" becomes "qfbh" . (ii) The symbol 

forces name matching to start at the beginning of the name. So the (9. . . '* part of the 

regular expression allows names beginning with "q" to be candidates for inclusion (though 

they must also pass later tests). (iii) The symbol ". . .$" forces name matching to end at 

the end of the name. So the ""( . . . I$" part of the regular expression limits both the 

beginning and ending match. (iv) The part cd the regular expression ( . . . I qfbh) gives 

qfbh as one of the strings whose presence makes the name a candidate for inclusion. This 

(along with the requirements already mentioned) shows that the element "QFBH" from 

the lattice file@ will be one of the magnets to be subdivided; its name (after conversion to 

lower case) includes the string "qfbh" and matches both at beginning and end. This is an 

example of a "last resort" explicit name inclusion in that element name "QFBH" is really 

specified explicitly (not counting upper/lower case.) (v) The regular expression also allows 

other matches, though all must start with lq and end with h. The portion Cfdl allows 

the second character of a three character name to be either f or d, so quadrupole names 

QDH and QFH also match. (vi) The portion Cf dl Clmcl admits certain 4 character names, 

such as QDMH. Putting it all together, it turns out that all quads exhibited in @ will 

be subdivided. If there were a non-quadrupole (say an RF cavity, for which subdivision 

makes no sense) with name QFCH, the name would match the regular expression but the 

processing algorithm would just ignore the selection. Nevertheless, to reduce the likelihood 

of error, it makes sense to maintain naming conventions such as "all quadrupoles, and only 

quadrupoles, have names beginning with Q" . 

..A 

If vacuum chamber dimensions are important, they should, because they are installed 

hardware, be included in the lattice descriptialn file. But, since the SIF description language 



6.2 : Annotated Examples: Basic example 39 

does not support this, it is necessary to introduce aperture information (for bends, quads, 

and sextupoles) via the present script: @ 
$shell->addAperture ("elements" => (I^ (bnd) $Ir, 

"aperture" => [I, 0.116, 0.0791); #51 
$shell->addAperture ("elements" => @I^ (qCfd1 h I qdmh) $" , 

"aperture" => [I, 0.105, 0.1051); #56 
$shell->addAperture ("elements" => It^ (s  1241 [fd] )$" , 

"aperture" => [I, 0.13, 0.131); 
... 

The aperture attributes are 1 (ellipse) with half-widths and half-heights as shown Such 

apertures have no effect on analytical lattice calculations, but in particle tracking they 

correctly model the loss of particles that would strike a vacuum chamber wall. 

At this point all lattice description is complete, though not yet fully specific in the 

sense that options remain as to what constitutes the actual beamline to be investigated. 

The next command fixes this: @ 
$shell->use ("lattice" => "ring") ; #82 
$shell->writeFTPOT("file" => I!. /out/" . $job-name . Il/tpot") ; #86 

Here line #86 has also output a file $UAL/eximples/UI/out/test/tpot that can serve as 

input to the Fortran version of TEAPOT. To run this file with FTPOT it is only necessary 

to append the lines 
use, ring 
makethin 
twiss 
analysis, energy=l.93827231, xtyp=l.e-6, pxtyp4.e-6, ytyp=l.e-6, !L 

pytyp'1.e-6, dptyp=l.e-6, particle=proton, print 

This facilitates code comparison and result checking and makes available certain TEAPOT 

algorithms that are not supported in UAL a,s well as certain post-processing tools.? per- 

formed by the ZLIB module (an approach .Erst taken by Forest.) This is probably the 

most significant analytical improvement of the present version of TEAPOT compared to 

earlier versions. The earlier approach, though exact in principle, was in fact limited to 

low order (roughly through sextupole order) by considerations of machine precision. Dif- 

ferential algebra gives results exact to all orders, limited only when computation resources 

are exhausted. These thin element results also converge exactly to continuum results in 

the limit of vanishing interval lengths. (This was confirmed by Forest.) A fragment of a 

T Incidentally, the original version of TEAPOT uses the arguments xtyp, pxtyp, ..., to the analysis 
command as "infinitesima.ls" in the evaluation of lattice functions by numerical differentiation. This is really 
crude! As TEAPOT is implemented within UAL all differentiation is performed by differential algebra 
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file written in this format is given in section D.2 @ The next step in the simulation is to 

define beam parameters: @ 
$shell->setBeamAttributes ("energy" => 1.93827231, "mass" => 0.93827231) ; #94 

Here only particle mass and total energy have been specified, but other properties such as 

charge, or revolution frequency could be entered. At this point the ideal physical system to 

be simulated has been fully described. Before incorporating "blemishes" it is appropriate 

to investigate its linearized behavior and its momentum dependence: @ 
my $dp; #lo4 
for($dp = -0.02; $dp <= 0.02; $dp += 0.005)C 

$shell->analysis ("print" => ./out/'' . $job-name . "/analysis" . ".'I . $dp, 
"dp/p" => $dp); 

3 #lo8 
$shell->map("order" => 1, "print" => Il./out/" . $job-name . "/mapi") ; #112 

The f o r  loop ending at line #I08 performs Twiss analyses for each of nine fractional mo- 

menta, from -0.02 to +0.02. The construct " . /out/". $ job-name . "/analysis". .'. " . $dp 

opens a sequence of files, ./out/test/analysis.-0.02, ..., one for each of the momenta 

in the € o r  loop. Line #I12 outputs the 6 x 6 once-around transfer matrix of the ring for 

the most recent analysis. More precisely the output consists of a ZLIB-formatted listing 

of all orders up to 1 (i.e. 0 and 1) of the 'VTps" (vector of truncated power series) that 

make up the nonlinear once-around transfer map. The (reduced-precision) output is: @ 
ZL1B::VTps : size = 6 (dimension = 6 order = 1 ) 
0 -3.512e-17 -1.387e-17 0.000e+00 0.000e+00 -1.022e-15 0.000e+00 0 0 0 0 0 0 
1 2.338e-01 -4.801e-01 0.000e+00 0.000e+OD -2.090e-05 0.000e+00 1 0  0 0 0 0 
2 2.497e+00 -8.513e-01 0.000e+00 0.000e+00 2.000e-05 0.000e+00 0 1 0 0 0 0 
3 0.000e+00 0.000ei-00 2.458e+00 4.715e-01 0.000e+00 0.000e+00 0 0 1 0 0 0 
4 0.000e+00 0.000e+00 -1.17le+Ol -1.840e+00 0.000e+00 0.000e+00 0 0 0 1 0 0 
5 0.000e+00 0.000e+00 0.000e+00 0.000e+00 l.OOOe+OO 0.000e+00 0 0 0 0 I O  
6 5.689e-05 -2.744e-05 0.000e+00 0.000e+00 6.414e+Ol 1.000e+00 0 0 0 0 0 1 

As well as the closed orbit in the first line (which vanishes on-momentum), the 2 x 2 

horizontal and vertical transfer matrices are included in lines 1 through 4, and longitudinal 

matrix elements are also included. The vanishing of "off-diagonal" transverse elements 

shows that the lattice is uncoupled at this stage. The meaning of the indexing columns on 

the far right should be obvious. A cubic map is exhibited in section 6.5.1 @ . 

Having completed the analysis of the ideal machine, to make the simulation more 

realistic, one adds imperfections using commands like: @ 
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$shell->addFieldError("elements" => (bnd) $" , "R" => 0.13, 
"b" => cO.0, 0.1, 51.0, 0.5, -26.0, 0.2, 0.0, 0.0, 0.0, 0.01); #124 

... 
my $heed = 973431; #143 
my $rgenerator = new ALE::UI::RandomGenerator($iseed); #144 
my $qSigB = 10.0, 0.0, -2.46, -0.76, -0.63, 0.00, 0.02, -0.63, 0.17, 0.001; #148 
my $qSiqA = cO.0, 0.0, -2.50, -2.00, 1.29, 1.45, 0.25, 0.31, -0.11, 1.041; #149 
$shell->addFieldError ("elements" => "-qdh", "R" => 0.1, 

"b" => $qSigB, "a" => $ qSiqA, "engine" => $rgenerator) ; #157 

As before, the element selection is performed by regular expression matching. Field errors 

can be systematic, and added to BND elements, as in line #124, or they can be random, 

and added to elements whose names begin with QDH, as in lines #157. For the random 

assignments a starting seed is assigned in line #I43 and the random number generator 

is specified in #144. "Erect" field multipoles are introduced via the "b" list and "skew" 

multipoles are introduced via the "a" list. Not shown are the many error assignment 

commands for the other elements in the ring;. 

This example ends with multiturn particle tracking; 0 
my ($i, $size) = (0, 10); #i77 
my $bunch = new ALE::UI::Bunch($size); #179 
$bunch->setBeamAttributes(l.93827231, 0.93827231); #181 
for($i =O; $i < $size; $i++)C 

) #185 
$shell->run("turns" => 100, "step" => 10, 

open(BUNCH-OUT, ">./out/" . $job-name . "/bunch-out-new") 
my ap; #193 
for($i =O; $i < $size; $i++){ #194 

$bunch->setPosition($i, 1.e-2*$i, 0.0, l.e-2*$i, 0.0, 0.0, i.e-3*$i); 

"print" => "./out/" . $job-name . "/fort.8", "bunch" => $bunch) ; #188 

I I die "can't create file (bunch-out-new) ; #191 

@p = $bunch->getPosition($i); #195 
$output= sprintf 
("i=%5d x=%14.8e px=%14.8e y=%14.8e py=%l,4.8e ct=%l4.8e dp/p=%l4.8e \ntq, 
$is $p LO1 , $pC11, $p[21, $pC31, $pC41, $pC51); #198 
print BUNCH-OUT $output; #I99 

1 #200 
print "End (", --LINE--, ")\n"; #202 
1; #204 

In line #I77 the number of particles is set to 10. In line #I81 the energy and particle mass 

(both in GeV, as always) are set.t The first argument of $bunch->setPosition is a parti- 

cle index; the remaining arguments are starting coordinates for the particles to be tracked, 

expressed as functions of $i. In this case they all lie on a x, y, dp diagonal. Line #I88 starts 

By using the DDD debugger to trace through the code it is possible to step down into the code where 
inputs like these are actually used in order to confirm what physical quantities the inputs stand for. This is 
easier a.nd more reliable than hunting for the information in external documentation (such a,s this manual). 
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the tracking process, requesting tracking of all particles for 100 turns. (The "step" argu- 

ment is ignored and should be deleted from example.) The remaining lines give the output 

of the tracking. The file handle BUNCH-OUT is set to ./out/test/bunch-out-new in 

line #191, the output is generated by line #198, and the printing is performed by line #199. 

The output file out therefore contains the sjx phase space coordinates of all ten particles 

after they have been tracked for one hundred turns. 

(The purpose of the lonely final statement (1; #204) is to produce a non-zero return 

value (indicating successful completion) when control "falls 011t" the bottom of the routine. 

In general the most recently calculated value is what is returned from a subroutine. Exiting 

from the middle of a subroutine, with return value $value, can be accomplished by the 

statement return $value; .) 

6.3. Selective lattice function output 

One frequently wishes to output lattice functions evaluated at particular locations in the 

lattice. Locations in the lattice can be specified by their longitudinal coordinates or by 

the names of the elements at those locations. The latter approach is easier because it can 

use the regular expression mechanism described earlier. 

Consider the same SNS lattice as was studied in the basic example (section 6.2) and sup- 

pose that we want global position (i.e. survey) data at every element and Twiss output at 

every bend element named BND. The script $UAL/examples/UI-Analysis/shell-sns . pl 
has been tailored to this task. When this script is run the immediate output is much the 

same as in section 6.2, except for the lines G) 
Linear analysis: 
... 
survey 
twiss 

The new lines in the script that generate this output are @ 

$shell->survey("elements" => t l I 1 y  "print" => I t .  /out/" . $job-name . "/survey") ; 
$shell->twiss ("elements" => "bnd" "p:rint" => I t .  /out/ll . $job-name . "/twiss") ; 
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The survey output appears in $UAL/exampl,es/UI-Analys is/out /t est /survey. Output 

occurs at every element since the empty stri:ng ’ ’  matches all element names. The first 

several lines of output (slightly reformatted for this guide) are: @ 
# name 
--- --- -_ 
0 qdmhl 
1 qdmh 

3 qdmh2 
2 

4 011 
5 oil 
6 oil 
7 Oil 
8 qflhl 
9 qflh 
... 

suml(thick) 

0.0000e+00 
0.0000e+00 
2.5000e-01 
5.0000e-01 
5.0000e-01 
2.2125e+00 
3.9250e+00 
5.6375e+00 
7.3500e+00 
7.3500e+00 

suml(thin) 

0.0000e+00 
0.0000e+00 
2.5000e-01 
5.0000e-01 
5.0000e-01 
2.2125e+00 
3.9250e+00 
5.6375e+00 
7.3500e+00 
7.3500e+00 

.--- -------- 
X 

O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 

Y 

O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
0 .  Oe+OO 
0. Oe+OO 
O.Oe+OO 
0. Oe+OO 
O.Oe+OO 

z 
. -- -- ----- - -- 
O.Oe+OO 
O.Oe+OO 
2.5e-0i 
5.Oe-01 
5.Oe-01 
2.2125e+00 
3.9250e+00 
5.6375e+00 
7.3500e+00 
7.3500e+00 

theta 

O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 

- -- ------ 
phi 

O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 

-- ------- 
psi 

O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 
O.Oe+OO 

-- ---- 

The next request is for twiss output at ,all BND elements. The output appears in 

$UAL/examples/UI-Analysis/out/test/twiss, the first several lines of which (also re- 

formatted) are: @ 

0 0.00e+00 
46 bnd 3.15e+01 
53 bnd 3.55e+01 
62 bnd 3.95e+01 
71 bnd 4.35e+01 
80 bnd 4.75e+01 
89 bnd 5.15e+Oi 
98 bnd 5.55e+01 
... 

...................... 
betax alf ax 

...................... 
2.626e+00 5.705e-01 
4.271e+00 -1.075e+00 
8.281et00 1.652e+00 
4.137e+00 -1.075e+00 
8.374e+00 1.624e+00 
4.271e+00 -1.075e+00 
8.281e+00 1.652e+00 
4.137e+00 -1.075e+00 

qx --- -- --- - - - 
O.OOOe+OO 
6.547e-01 
7.330e-01 
9.074e-01 
9.867e-01 
1. 155e+00 
I. 233e+00 
I. 407e+00 

-- --- - 
CPX 

----- - 
1 ,. 406e-05 
3 253e-05 
5 396e-01 
2 050e+00 
3 ,, 617e+00 
2 ,. 857e+00 
3 ,. 246e+00 
8 ,, 067e-01 

betay alf ay 

1.232e+01 -2.260e+00 
8.293e+00 1.764e+00 
4.190e+00 -1.055e+00 
8.490e+00 1.812e+00 
4.116e+00 -1.020e+00 
8.293e+00 1.764e+00 
4.190e+00 -1.055e+00 
8.490e+00 1.812e+00 

qY 

O.OOOe+OO 
4.720e-01 
6.442e-01 
7.216e-01 
8.929e-01 
9.720e-01 
1.144e+00 
1.222e+00 

The survey and twiss subroutines called in code fragment @ are contained in scripts 

Shell. pm, SimpleSurvey . pm, and SimpleTwi.ss . pm in directory $UAL/ext/ALE/api/ALE/UI. 

From these files one sees that the separate calls each trigger multiple calculations. Most 

of the function calls are self-explanatory; in any case fuller explanations will not be given 

here. But from this code it should be obvious how one can tailor the output, as regards 

quantities to be printed out, lattice 1ocatio:ns where the quantities are to be exhibited, 

and general formatting. Perhaps one prefers fl rather than ,B? One need only replace 

$columns 131 by sqrt ($columns 131 1 (and similarly for ,By) in the output statement near 

the end of the SimpleTwiss script and similarly for ,By. It is also straightforward to format 
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the output file appropriately for graphing the lattice functions by a graphing program such 

as gnuplot. 

Most theoretical formulas in lattice physics involve integration (usually approximated 

by summation) over all elements in the ring, of element parameters such as quadrupole gra- 

dients, length-strength products, inverse focal lengths, sextupole strengths etc., weighted 

by fractional powers or other functions of 1ati;ice functions (/Iz, /Iy, &,, dispersion, etc.) All 

of the required lattice functions are available from $UAL/ext/ALE/api/ALE/UI/Shell. pm. 

An example in section 6.4 will show how to gain access to the magnet strengths required. 

Once this information is in hand one can usle Perl to evaluate the accelerator physics for- 

mulas involving such summations (or even integrations if necessary). Though Perl may 

not be as fast as a compiled language, it is plenty fast for typical postprocessing tasks. 

6.4. A personalized shell for c0d.e development 

The examples presented so far showed how to run canned UAL scripts. If these are 

classified as “elementary UAL” we now advance to “intermediate level UAL” . A key pur- 

pose of UAL is to be an environment in which an accelerator physicist’s attention can be 

concentrated on a specialized problem without being overwhelmed by the complication of 

“the rest of the system”. The reason this is important is that the detailed and correct 

understanding of any subsystem requires that the rest of the accelerator perform more- 

or-less as it is supposed to. A perfect simulation code would correctly model all systems 

and be prepared to answer any question concerning the functioning of the accelerator, but 

it is unrealistic even to strive for such a utclpian situation. Rather, individual physicists 

strive to define and then answer sufficiently narrow, well-posed questions concerning the 

performance of accelerator subsystems. The purpose of UAL is to support such activity. 

The physicist zeroing in on some area of interest, and wishing to use the tools of 

UAL, will often have to alter the existing (code in the area of concentration as well as 

generating new code. In this sense “hacking into the code” is strongly encouraged. This 

is fairly straightforward, especially when only Perl code is involved. What may be less 

straightforward is keeping track of the changes in case it is necessary to “back them out” 

or to cause the improved code to be integrated eventually into the distributed version of 
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UAL. Failure to do this leads, at best, to multiple versions or, at worst, to dis-use and 

eventual loss of the improvement. 

The present example suggests a discipline to be followed, when revising the code; it is 

intended to facilitate the coordination of revjsed UAL code with the CVS-installed version 

of the code, with the goal of eventually facilitating the merging of the codes. The idea is 

to use the object-oriented feature called inheritance to establish a specialized user shell 

UALUSR: : Shell that inherits all methods from the generic user shell ALE: : UI : : Shell, 

overriding some and generating others as required. 

The physics of this example concerns itself with a family of quadrupoles, each equipped 

with a steering elements (kicker), and a BPNL The task is to center the beam horizontally 

at each of the (imperfectly aligned) quadrupoles. This example is based on an actual study 

of beam-based alignment of quadrupoles in the SNS and is discussed in detail in a technical 

note by Talman and Ma1it~ky.I~ 

This example is located in directory $lJAL/examples/BmBasedBPMAlign. The Per1 

script is BmBasedBPMAlign. pl; it reads the lattice from data/BmBasedBPMAlign .mad. 

These files differ only slightly from the corresponding files in the basic example, section 6.2. 

The reader looking for a comprehension-testing exercise could generate these files by hand 

rather than accepting the distributed versions. The main purpose is to establish an envi- 

ronment from which subsequent code deve1o:pment can proceed. 

In the SIF (i.e. MAD) lattice description, the quadrupoles, eight in all, are treated as 

paired half-quads called QFH and, for simplicity the kickers and BPM’s are treated as if 

centered on the quadrupoles. In the lattice file these packages are described by 0 
QF-a : LINE = (QFH, kickha, bpmha, QFH) 
QF-b : LINE = (QFH, kickhb, bpmhb, QFH) 

QF-h : LINE = (QFH, kickhh, bpmhh, QFH) 
... 

As mentioned already, this example continues to use the same SNS lattice as the previous 

example. The present changes are that the line QF : LINE = (QFHl,QFH,QFH,QFH2) in 

lattice file @ of section 6.2 has been replaced by the eight lines just shown, in order to 

be able to adjust their elements individually. Where QFH pairs appears at eight places 

further down in the lattice file they are replaced respectively by QF-a, QF-by . . . ,QF-h. 
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Proceeding as in the first example, we start by applying random misalignments to the 

QFH elements, using the instruction @ 
my ($rMisalignIndices, $rdelx , $rdel.y , $rdeltheta) = $shell->addMisalignment 

("elements" => It^qfh$" , "dx" => 0.01 , "dy" => 0.01) ; 

This $shell->addMisalignment simulation. method did not appear in the previous ex- 

amples, but it was listed above in Chapter 51 and it differs from $shell->addFieldError 

only in that it perturbs magnets in position rather than in magnetic field. For present 

purposes we wish not only to misalign the magnets but also to know what misalign- 

ments have been applied. Iii real life these displacements would be unknown but, since 

we are testing a method, we need to "cheat" by peeking at the assigned values. The 

return arguments ($rMisalignIndices , $rdelx, $rdely, $rdeltheta) in @ point to 

this information. The first argument is a reference to the array of element indices of 

the displaced elements and the others arguments are references to the arrays of mis- 

alignments (of which we will discuss only the first in this example.) Unfortunately, 

by viewing the file $UAL-EXTRA/ALE/api/ALE/UI/Shell . pm, one sees that subroutine 

$shell->addMisalignment does not, in fact, return any values. We therefore have to 

modify that code by inserting the lines marked # USR extension in the following: @ 
sub admisalignment 
c 
my $this = shift; 
my %params = Q-; 
my $pattern = "; 
if (def ined $params{llelernents")) €$pattern = $params{"elements") ; 1 
my $arg-counter = 0; 
my $sigx = 0; 
if (def ined $params{ltdxtl)) {$sigx = $params{"dx"); $arg-counter++; ) 

my QelemIndices = $lattice->indexes($patteicn); 
... 
... 
# - USR extension 
my Qdelx; 
my QdeLy; 
my Qdeltheta; 
# 

for($i=O; $i < $#elemIndices + 1; ' $i++){ 
$element = $lattice->element($elemIndicesJ~$il); 

if ($sigx) I 

... 

... 
$element->add ( ($sigx*$rvalue) +$dxKey) ;; 
$C\Qdelx) [$il = $sigx*$rvalue; # USR extension 

1 
... 
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Too little detail has been given here to understand this code in every detail, but the 

following things have been accomplished. The first seven lines decipher the input arguments 

as was explained in section 4.1.2 and provide the example that was promised there. The 

next line shown saves the indices of displaced elements in the array QelemIndices. So 

far there has been no change but the following lines squirrel away information that is now 

known will be needed later. Then (because dx was included in the argument list) $sigx 

is true, so the misalignment values $sigx*!lrvalue are saved in the array @delx. The 

last line returns the array reference.+ The other return values will be ignored.) We have 

therefore modified code block @ to be consistent with the call in code block @ . 
A major virtue of CVS is that changes like these can be hacked into the code without 

worrying about polluting the original version, since the original can always be retrieved. 

But, once your revisions have been frozen, you will want to save them; so you may as well 

plan for this from the start. 

A new personalized "application interface" UALUSR: : Shell is needed. This is some- 

thing that you would have to generate and save as the file api/Shell.pm. Here, since this 

is an example, the script is supplied for you:f @ 
package UALUSR::Shell; 
use Carp; 
use strict; 
use vars qw(@ISA) ; 
use lib ("$ENVCUAL-EXTRA>/ALE/api") ; 
use ALE::UI::Shell; 
@ISA = qw(ALE: :UI: :Shell); 
sub new 
C 
my $type = shift; 
my %params = @-; 
my $this = new ALE: :UI: :Shell(%params) ; 

return bless $this, $type; 
... 

t A quicker and dirtier approach to  accessing the parameter changes would have been to make the saved 
arrays global variables so they would not have to be returned by reference. But this is the sort of slipshod 
practice that evolves inexorably into spaghetti code. 

The line use Carp modifies error reporting and is therefore inconsequential. The curious Per1 construct 
q w ( x  y z) is equivalent to  placing quotation marks around the individual arguments; Le. equivalent to  

z . The statement use strict prevents access to  global variables and the statement use vars 
q w ( Q 1 S A )  restores access to just the Q I S A  array. The Q I S A  array array is used three lines further down to 
declare that the newly-defined shell will start with all methods defined in ALE: :UI: :Shell. 

<< >> >1 >> >1 >> x y 
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1 
sub addMisalignment 
c 

... 
return (\@elemIndices,\@klvalue); 

1 

c 
sub getErectMagnetStrengths 

... 
return (\@elemIndices,\@delx,\@de I,' 

1 
If theta) ; 

The subroutine addMisalignment listed here was spelled out above in @ . In this new 

shell the inherited method addMisalignmerit has been over-ridden; also a new method 

getErectMagnetStrengths has been defined (of which only one line is shown in @ .) 

now begins with @ 
To make use of the new shell the UAL command script (call it BmE3asedBPMAlign.pl) 

... 
use lib ( ' I .  /api") ; 
use UALUSR::Shell; 
my $shell = new UALUSR: :Shell ("print" => ' I .  /out/" . $ j ob-name . ''/log'') ; 
... 

which creates the new UALUSR shell instance. This replaces code fragment @ of sec- 

tion 6.2. Following this will be the lattice (definition commands, for example fragments 

from section 6.2: @ , @ , @ , @ , @ , and @ . Finally lines specific to the simulation 

being developed are included, such as: @ 
... 

my ($rMisalignIndices ,$rdelx,$rdely, $rdelthetin) = $shell->addMisalignment 

my $numMisaligns = $#c$rMisalignIndices); #19:2 
my $numkicks = ($numMisaligns + 1)/2; #I93 

$shell->hsteer ("adjusters" => "*kickh", "detectors" => ll-bp&ll) ; #204 

my ($rErectIndices,$rkickhs) = $shell->getErei:tMagnetStrengths 

("elementst' => "-qfh$", "dx" => 0.01) ; #I90 

... 

... 
("elements" => "-kickhl', "multindex" => 0:)  ; #208 

... 

Line #I90 is the revised command discussed. above as code fragment @ . Line #I92 il- 

lustrates the Per1 syntax for obtaining the number of elements in an array and line #I93 

accounts for the pairing of the quadrupoles (artificially present in the SIF lattice descrip- 

tion.) Line #204 uses the hsteer algorithm to resteer the beam through quad centers 

and line #208 uses the newly-defined method getErectMagnetStrengths to obtain the 
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strengths that have been determined by histeer. F’rom these strengths the quad mis- 

alignments can be inferred and then compared to the (known by cheating) actual quad 

misalignments. The calculations (not shown) required for this comparison are the sort of 

postprocessing activity for which Per1 is ideal. 

6.5. Fringe field map 

Trajectory evolution through lattice sectors can be represented by maps. In this example 

the end fields of quadrupoles in the SNS will be modeled. Just as the end fields of dipole 

magnets are (predominantly) of quadrupole order, the end fields of quadrupoles are pre- 

dominantly of octupole order-deflections are cubic functions of the transverse coordinates. 

A theoretical discussion of maps is given in appendix E. 

Especially for hadron accelerators, it is essential to preserve symplecticity to high 

accuracy. No special treatment is required for dipole magnets with end fields modeled 

by quadrupoles, since the end fields are linear and symplectic. Often the end fields of 

quadrupoles can simply be ignored but, for i3 large aperture accelerator like the SNS, the 

octupole end fields have significant effect-their leading effect is dependence of tune on 

amplitude. To a good approximation an end field can be treated as if it acts impulsively at 

a single plane. The relation between input-to and output-from coordinates for this plane 

can be represented by a vector of truncated power series. 

For extremely large amplitudes the convergence of such power series may simply be 

too poor for the series to be applicable. But when the fields are weak, as here, this is not 

expected to be an issue. The quad end deflections are approximated well by the cubic 

terms in the power series of the map. Yet one cannot simply include cubic terms without 

further investigation. Truncation causes nonsymplecticityt that can invalidate long term 

tracking. A cubic map, even if symplectic “to cubic order”, is necessarily nonsymplectic 

“to quartic order” or, in general, a truncated map can be symplectic to its own order, but 

not to higher order. 

To be able to investigate these issues it is valuable to have the capability of introducing 

maps that are truncated to arbitrary order and that are symplectic at least to their order 

There are techniques involving (nonlinear) transformation to new variables such that the exact map 
elements a.re actually polynomials rather than infinite series. No such procedure is being considered here. 
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of truncation. In this 

approach the map element corresponding to each phase space coordinate is obtained by 

appropriate differentiation of a polynomial “Hamiltonian” (sometimes known as a pseudo- 

Hamiltonian). The actual differentation process is in fact a Poisson bracket evaluation, 

an operation that is provided by ZLIB. What results, for each coordinate, is a power 

series representing its output value as a power series of all input coordinates. In first 

approximation the polynomial order of each of these series is one less than the order of the 

Hamiltonian. But it is possible, by iterating, by keeping more terms in the exponential 

series entering the Lie transform, and by truncating to higher order, for the resulting 

map to be symplectic to higher order than t:he initially-truncated Hamiltonian. This does 

not make the map “correct” to higher order, but it does make it symplectic to higher 

order. Starting from an approximate map this process can therefore produce a map that 

is symplectic to whatever order one is willing to evaluate the power series. 

The so-called “Lie transform” formalism makes this possible. 

These mapping capabilities of UAL are ithe subjects of this section. First the map or 

maps have to be generated and then they have to  be introduced into the simulation script. 

These are the tasks of the next two sections. 

6.5.1. Map generation 

The code illustrating map generation is located in directory $UAL/examples/HardEdge. 

The script f f . p l  begins 0 

use l i b  ( I t  $ENV(UAL_ZLIB) / api ‘I I t  $ENV(UAL-DA) / api ” ; 
use Z1ib::Tps; 
use HardEdge; 
my $dimension = 6; 
my $maxOrder = 5; 
my $space = new Zlib::Space($dirnension, $maxOrder); 

This example uses the truncated power series tools made available by the command use 

Zlib : : Tps ; . This capability was already exhibited, with minimal explanation, in sec- 

tion 6.2; a linear order, once-around, transfer map for the whole SNS ring was displayed 
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as @ . Here, as there, the full 6 x 6 phase space dimensionality is specified and the 

maximum truncation order is set to 5.t Continuing with script ff .pl @) 
my $I = new Zlib: :VTps ($dimension) ; 

# N - number of terms in the Lie transformation 
# K - MAD quad coefficient multiplied by +I (entrance) or -1 (exit) 
my $ff-integrator = new HardEdge("N" => 1, "K" => -4.35305u5.6575, 

$I += 1.0; 

; 

an identity map $1 is defined, number of terms parameter N and strength parameter 

K assigned and the routine HardEdge.pm for propagation through fringe field (from the 

HardEdge package) declared. The header material of script HardEdge .pm isf : @ 

package HardEdge; 
use vars qw(@ISA) ; 
use Da: : Const qw($X- $PX- $Y- $PY-, $CT- $DE-) ; 
use Da::Lie::Integrator; 
@ISA = qw(Da: :Lie: :Integrator); 

As well as associating map variables with physical coordinates this causes the script to in- 

herit all the methods of the parent class Da: : Lie : : Integrator. The Da: : Const package 

relies on the Per1 typeglob data type which is too technical and idiosynchratic to be ex- 

plained here. The package defines and exports global references to read-only constants such 

as particle rest energies or (in this case) the indices 0,1,2,3,4,5, as they correspond to the 

variables x, p,, y, py, et, de. This has the seerningly cosmetic, self-documenting purpose of 

permitting a variable value such as $PO->value (0) to be expressed as $PO->value ($X-)- 

the actual purposes are: to support the overloading of coordinate representations by both 

scalar value and power series; and to allow the truncated power series code to be math- 

ematically general, absent of any particular identification of its variables with physical 

quantities. 

The instantiation code in the new integrator is @ 
sub new 

my $type = shift; 

t The order of a polynomial in UAL is dynamically determined as the power series is being evaluated. 
The order of any particular power series can therefore be less than t,he maximum order, but it cannot be 
greater. 

Header material like this was explained in a footnote to  section 6.4. 
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my %params = @-; 
my $self = new Da: :Lie: :Integrator(@-) ; 
$self->(K> = 0.0 unless defined ( $self->(K) = $params(K) ); 
return bless $self, $type; 

3 

which receives K and N (not visible in the: code fragment shown because it is received 

by Da: :Lie: :Integrator) as input arguments. The Lie integrator assumes propagation 

through drift as default; this behavior has to be overridden (in HardEdge .pm) by introduc- 

ing a Hamiltonian appropriate for propagation through the hard edge of a quadrupole;15 

sub hamiltonian 
€ 
my ($this, $p) = k; 
my $h = I.; 
if($p->size < $PXJ € return $h;) 
# Beam 
my $vObyc = $this->€vObyc>; 
my $charge = $this->€charge); 
my $PO = new Zlib: :VTps($p->size) ; 

# Hamiltonian 
my $x2 = $PO->value ($XJ *$PO->value ($X-) ; 
my $y2 = $po->value($Y-)*$pO->value($Y-); 
$h = 3. *$xZ*$pO->value ($Ye) *$PO->value ($PY.-) ; 
$h -= 3, *$yZ*$pO->value ($X-) *$PO->value ($PX.-) ; 
$h += $y2*$po->value ($YJ *$PO->value ($PY.-) ; 
$h -= $x2*$pO->value ($X-) *$PO->value ($PX.-) : 
$h *= $this->€K)/lZ. ; 
return $h; 

$PO += 1; 

1 

Note the line my $PO = new Zlib: :VTps($p->size); which has defined a new vector 

of (initially vanishing) power series. The subsequent operations in the subroutine are 

overloaded in the sense that all operations (such as =, - =, and *) are performed on 

complete (truncated) power series. 

Continuing with script ff .pl; @ 

my $ff-map = $I + 0.0; 
$ff-integrator->propagate($ff-map, $beam-att); 

the map is instantiated and then propagated through the fringe region using a method 

inherited from $UAL-DA/api/Da/Lie/Integrator . pm. This subroutine (with four incon- 

sequential lines deleted) reads: @ 
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sub propagate 
c 
my ($this, $object, $beam-att) = tl-; 
my $morder = $this->IN); 

my $h = $this->hamiltonian($object) + 0.0; 
my $i; 
my $tmp = $object + 0.0; 
my $sum = $object + 0.0; 
for($i = I; $i <= $morder; $i++){ 

... 

$tmp = $h->vpoisson($tmp) /$i; 
$sum += $tmp; 

1 
for($i =O; $i < $object->size; $i++) $object->value($i, $sum->value($i)) ; > 
$object->order($object->order); 

> 

The final lines of ff .pl (with their accompanying explanatory comments describing their 

purpose) are @ 
## truncate the order of power series 
$ff-map->order($maxOrder - 2); 
# write power series coefficients into the specified file 
$ff-map->write("./out/ff-map.new") ; 

The hard edge map has now been calculated and saved to ./out/ff-map.new. The non- 

zero cubic rows are: @ 
ZL1B::VTps : size = 6 (dimension = 6 order = 3 ) 
28 -6.411917e-02 0.000000e+00 O.OOOOOOe+OO 0.000000e+00 0. 0. 3 0 0 0 0 0 
29 0.000000e+00 1.923575e-01 0.000000e+00 0.000000e+00 0. 0. 2 1 0 0 0 0 
30 0.000000e+00 0.000000e+00 1.923575~:-01 0.000000e+00 0. 0. 2 0 I O  0 0 
31 0.000000e+00 0.000000e+00 0.000000e+00 -1.923575e-01 0. 0. 2 0 0 1 0  0 
35 0.000000e+00 0.000000e+00 0.000000e+00 3.847150e-01 0. 0. I 1 1 0  0 0 
39 -1.923575e-01 0.000000e+00 O.OOOOOO~!+OO 0.000000e+00 0. 0. I 0 2 0 0 0 
40 0.000000e+00 -3.847150e-01 0.000000e+00 0.000000e+00 0. 0. I O  I 1 0 0 
54 0.000000e+00 1.923575e-01 0.000000e+00 0.000000e+00 0. 0. 0 1 2  0 0 0 
64 0.000000e+00 0.000000e+00 6.411917~:-02 0.000000e+00 0. 0. 0 0 3 0 0 0 
65 0.000000e+00 0.000000e+00 0.000000e+00 -1.923575e-01 0. 0. 0 0 2 1 0  0 

The format of this file was explained along with output @ in section 6.2. This time 

(not shown) there are identity matrix elements in the linear part and zero elements in the 

constant and quadratic part. After calculating maps like these for all quadrupoles in the 

lattice one proceeds to incorporate the maps into the lattice description. 
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6.5.2. Map application 

The code illustrating the inclusion of maps in lattice descriptions is located in directory 

$UAL/examples/UI-FF. The starting lattice file is 

$UAL/examples/UI-FF/dat a/f f -sext-l.atnat. mad 

It is an SNS lattice much like the lattices in. previous examples. The end field maps for 

its quads have been pre-calculated and reside in directory quadff. The first seventy or so 

lines of the shell-sns-ff .pl script are much like the corresponding lines of the script in 

section 6.2. Deviation begins with the lines (3 
print "Define 3D fringe fields" , "\n" ; 
# We include ff only for quads because it was shown 
# that contribution from bends was negligible 
$shell->addMap("elements" => @I^ (qdhl) $" , 

$shell->addMap("elements" => I s ^  (qdh2) $ ' I ,  

"map" => "./quadff/frlqd.zrnap") ; 

"map" => "./quadff/fr2qd.zmap") ; 
... 

$she 11-> addMap ( "elements " => I t ^  ( qf bh2) $ , 
"map" => It. /quadf f /f r2qf. zmapt) ; 

Because the deflections (and even displacements that male the orbit discontinuous) caused 

by fringe fields occur at fixed longitudinal positions, their treatment by TEAPOT is just 

like the treatment of deflections by thin multipole elements. Therefore, nothing more 

needs to be done. The remaining lines of script shell-snsff .pl are identical to the 

corresponding lines of shell-sns- . pl. 

6.6. SXF input to UAL 

6.6.1. SXF rationale 

There has always been a need for a portable, fully-instantiated lattice description. When 

parameter deviations are entered by a particular code from a measurement database or, 

even more so, when errors are generated by Monte Carlo programs, it becomes difficult 

to perform accurate result comparisons. Calmmonly one is forced to repeat calculations 

already performed, using possibly-suspect code, just for the purpose of regenerating iden- 

tical data. This limitation was felt strongly when the US-LHC collaboration was starting 

to perform LHC simulations. The result was SXF (Standard exchange Format).22 
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By now an even more important use for SXF has been realized at RHIC. It is for 

capturing “snapshots” of actual lattice conditions, encountered during operations, to be 

used for offline simulations and “post mortem” analysis. Though it is straightforward, 

sta.rting from an SIF input, to collect and apply all the field imperfections, misalignments, 

apertures, operational procedures, etc. needed to instantiate all lattice elements, this is 

very time consuming and hard to maintain. Furthermore (for better of for worse from the 

point of view of database management) it is easier to output the current, fully-instantiated 

lattice parameters, than to update the original data sources. 

To understand some of the issues involved in reconstructing a lattice from an SXF 

file some understanding of SMF (the UAL accelerator model) is useful; a brief description 

is contained in Appendix D. For now the only point to be made is that each element in 

the lattice has two names, a design/generic GenNume and a fully-instantiated LutNume; 

sometimes known as a site-wide name. Within SXF the lattice is represented by a sequence 

of LutNume’s, along with their attributes. Since one of these attributes (the tug attribute) 

is the GenNume, it is easy to cross-reference one name to the other, even when only SXF 

information is available. But, within the original SIF lattice design, there are hierarchical 

features like sub-lines, symmetric sections, repetitions, and so on. None of this information 

finds its way into the SXF file. Hence a simulation that depends on hierarchical information 

(other than GenNume association) must either start from a SIF lattice description or 

re-insert the required relationships post facto. So far this has turned out to be either 

unnecessary or straightforward, so the absence of hierarchical information from SXF files 

has proved not to be a serious impediment. 

6.6.2. RHIC example 

RHIC simulation documented in this guide will be based purely on the SXF lattice 

description. t 

Historically the RHIC lattice description, like the SNS description in the basic example of section 6.2, 
started from a MAD file. Both the lattice descriptions and the UAL scripts from that era a.re obsolete 
but, primarily for the benefit of RHIC workers, there are functioning scripts from that era residing in 
directory $UAL-SXF/examples/codes/ual. They have self-expanatory names, rhic2sxf . p l ,  sxf 21hc. pl, 
a,nd sxf 2rhic. pl, The README file in the same directory contains some information about the scripts. These 
examples assume that the appropriate SIF lattice description is available. 
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The example to be described is $UAL/e:xamples/UI-SXF/rhic. The SXF lattice de- 

scription is up-to-date, as of Fall, 2002. Suppressing only print statements, the script 

reads; @ 
#!/usr/bin/perl 
my $job-name = "rhic"; #3 
use File::Path; #5 
mkpath(C"./out/" . $job-namel, 1, 0755); #6 
use lib ("$ENV{UAL_EXTRA3/ALE/api") ; #12 
use ALE::UI::Shell; #13 
my $shell = new ALE::UI::Shell("print" => "./out/'' . $job-name . "/log"); #17 
$shell->setMapAttributes("order" => 5); #25 
use lib ("$ENV{UAL-SXF)/api") ; #35 
use UAL::SXF::Parser; #36 
my $sxf-parser = new UAL::SXF::Parser(); #37 
$sxf -parser->read(". /data/blue-dAu-top-swn-no-sexts . sxf It, 'I. /out/ll. $job-name. "/echo. sxf ") ; #39 
$shell->use ("lattice" => IIRHICII) ; $49 
$sxf-parser->write("./out/" . $job-name . "/rhic. sxf ") ; #51 
$shell->setBeamAttributes ("energy" => 250, "mass" => 0.93827231) ; #59 
$shell->analysis ("print" => It. /out/" . $job-name . "/analysis") ; #67 
$shell->map("order" => 2, "print" => 'I ./out/" . $job-name . "/map2") ; #71 
print "End", "\n" ; 

Other than obtaining its input directly from i%n SXF file, this script is not essentially differ- 

ent from the basic script in section 6.2. The syntax and content of an SXF lattice descrip- 

tion file can be inferred from the fragment of SXF file blue-dAu-top-swn-no-sexts . sxf 

displayed next @ 
RHIC sequence { 
g6-markx marker { tag = clock6 

g6-solx drift { tag = hstar 1 = 3.1 
3; 

3; 
... 
g6-dhx sbend { tag = dxmp 1 = 3.70021937559 
body = kl = C -0.018860790782713 
body.dev = C kl = I: 0 1 kls = C 0 1 
3 

3; 
noswn.14 multipole { tag = erdmp 
body.dev = C kl = C 0 -9.61487901076e-05 1 kls = I: 0 0 1 
3 

3; 
. .  
.. 

bo6-qdl quadrupole { tag = qlo6 1 = 1.44 n := 2 
body.dev = C kl = C 0 -0.0830140433294 1 kls = C 0 0 1 
3 

3 ;  
... 
noswn.5834 drift { tag = oflstar 1 = 5.0358!3178 
3; 

endsequence at = 3833.84518146 
3 
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A few of the lattice elements supported by SXF-marker, sbend, multipole, quadrupole- 

are visible in this listing. A complete listing of supported elements is given in section D.3. 

Also visible in @ are LatName’s such as g6-markx7 g6-solx, g6-dhx, noswn.14, and 

noswn.5834, the final two of which show tlhe mechanism for making LatName’s unique 

when the same the same GenName appears more than once in the design lattice. As men- 

tioned above, the GenNume’s, i.e. design names, such as clock6 and hstar are retained 

using the tag= syntax. The n=2 entry records a “complexity” index, which TEAPOT in- 

terprets as ir=2. Element lengths are given lby 1= entries and their strengths by multipole 

lists such as kl = C 0 -0.0830140433294 11. 
Browsing the simulation script 0 , the first few lines are routine. From line. #I7 

one sees that this simulation is performed using the shell ALE: : U I  : : Shell, the code of 

which is $UAL-EXTRA/ALE/api/ALE/UI/She:L1. pm. (This pathname is constructed using 

statement #I2 and the conventional file naming prescription.) By lines #35 through #37 

the SXF parser code is $UAL-SXF/api/UAL/SXF/Parser .pm. Note that these scripts are 

generic; i.e. they are not RHIC-specific. Line #39 reads in the SXF file, a fragment of 

which was shown above under @ . After establishing beam attributes in line #59, this 

script, in line #67, evaluates and prints out beginning and ending Twiss parameters to file 

. /out/rhic/analysis and prints out the second order, once-around transfer map in line 

. /out /rhi c /map2. 

For completeness the elements and element attributes supported by SXF would be 

documented here. But this guide (in section D.3) documents ADXF instead, correlating 

its properties with the SMF lattice object model. Of course the elements described by 

SXF and ADXF are essentially similar, differing, in the case of, say, RHIC, by RHIC- 

specific features. The extensibility feature of ISMF is what makes the support of alternative 

descriptions straightforward. 
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6.7. FastTeapot 

As mentioned in the introduction, FastTeapot consists of recently developed C++ code 

whose purpose is implied by its name. Since the present user guide primarily documents the 

Per1 interface, as contrasted with the C++ code, it cannot properly document FastTeapot. 

However, a few words can be said about the motivation behind examples 

$UAL/examples/FastTeapot/linux/evolver, 
$UAL/examples/FastTeapot/linux/tracker, 

both of which are C++ executables. (Compilation instructions are given in the README 

file.) Their purpose is to exercise the Elemen$-Algorithm-Probe framework and to compare 

computation times and results obtained using traditional element-by-element TEAPOT re- 

sults with (matrix multiplication through sectors) FastTeapot results. Matrix multiplica- 

tion is the most obvious speed-up mechanism. for mapping through sectors. An application 

that came up recently requires tracking that needs to be fast while retaining a faithful 

representation of chromatic effects; in particular the second order coefficients T116, T226, 

T336, and T446 need to be accurate. 

With canonical (x, p z )  variables, even transport through drifts brings in chromatic 

effects which, being second order, are not accurately modeled by pure linear matrix mul- 

tiplication. On the other hand drifts sections are linear when (z,x’ = dx/ds),  (position, 

slope) variables, are used instead of x,pz (and likewise for y,pg).  In these coordinates, 

even with no quadratic terms included, the desired chromatic effects are retained. So ma- 

trix evolution through drifts retains the correct contribution of drifts to chromaticity. Of 

course quadrupoles, sextupoles, and octupoles continue to need symplectic, TEAPOT kick 

treatment. It is not claimed that this particular procedure is universally applicable, but it 

does exercise the Element-Algorithm-Probe framework. 

Program evolver calculates second order, once-around maps two ways: one uses 

only traditional element-by-element TEAPOT kick-tracking; the other uses kick-tracking 

through quadrupoles and nonlinear elements, but uses the non-canonical (x, d) coordi- 

nates of the previous paragraph through other elements. Of the second order coefficients 

determined, it is only T116, T226, T336, and T44, that are expected to agree in this compar- 

ison. Program tracker is similarly motivated. It uses the same two evolution mechanisms 
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to perform multiparticle tracking of a bunch. of particles. The idea is that tunes obtained 

by FFT processing of the outputs of program tracker can be used to extract, and hence 

compare, off-momentum tune dependence. 



Chapter 7. 
MPI Multiprocessor Suppolrt 

Since tracking many particles for many turns through a long and complicated accelerator 

lattice takes a long time, it is extremely useful to have access to a cluster of workstations 

working simultaneously. Sometimes one wishes to run the same simulation for a variety of 

parameter values. This leads to the “lowest tech” use of multiple processors-one simply 

uses one computer for each of the parameter combinations. This requires no multipro- 

cessing software. The next simplest case is that of Monte Carlo calculations, for example 

to determine dynamic aperture, in which randomly selected particles are tracked through 

multiple lattices having randomly assigned error fields and misalignments. In the past 

calculations like this have often used multiple computers in the trivial way just mentioned. 

But already in this case, which is known as “embarassingly parallelizable” because so lit- 

tle interprocess communication is required, it is extremely useful to have special purpose 

multiprocessor software. Without such software lengthy output files tend to exceed the 

available storage space and the book-keeping becomes onerous. Multiprocessor software 

permits one node-the term node is normally used instead of processor in this context- 

both to do this bookkeeping and to take responsibility for assigning particles and/or lattices 

to the remaining nodes. The MPI module of‘ UAL is ideal for this purpose. 

The MPI module of UAL is also ideal for the next more complex type of calculation 

in which there are multiple particles (prob,ably with a single lattice) and a large (but 

“not overwhelming”) amount of interprocess communication is required. Here we have 

in mind multiparticle simulations involving space charge or beam-beam interactions, for 

which considerations of computation time make it all but obligatory to employ multiple 

processors. Again it is natural to distribute equal numbers of particles to all but one of 

the nodes. Then, since every particle is influenced by every other particle, the information 

about a particle in one node has to be made available to all the other nodes. However 

this information need not be ‘Loverwhelming”. The calculation can be performed in two 

steps such that all-on-all intercommunication is avoided. Gathering data from each of the 

tracking nodes, a managing node can work out a space charge field, which it redistributes 

to all the tracking nodes. As long as this computation time is short compared to the 

- 60 - 
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tracking times the overall computation rate can be almost proportional to the number of 

nodes in the cluster. 

The so-called “message-passing” model of parallel computing is just one of the ways 

of harnessing the power of multiple computers. It is the one adopted by MPI (Message 

Passing Interface). It seemed to be the best approach for the level of complexity of parallel 

processing inost frequently encountered in accelerator simulation (though not necessarily 

for all multiprocessing tasks.) An excellent reference is by Gropp, Lusk, and Skjellum.lG 

MPI is a specification for libraries of subroutines written in Fortran, C, and C++. As 

such MPI is not a “language” and there is no MPI compiler. Rather the subroutines 

are compiled and linked by the appropriate Fortran, C, or Cff compiler. There can be 

more than one implementation of the MPI standard. The one employed by UAL is known 

as MPICH17 where the “CH” derives from ‘Chameleon” which apparently was the name 

of an early version. When the letter combination “ch” appears, for example in device 

type “chp4” they refer back to this early code. MPICH and its various utilities are public 

domain software. 

7.1. MPI installation 

Instructions will be given here for download’ing, configuring, and testing the MPI software 

on a single node. This is not to suggest that ithere is a great advantage to running multiple 

processes on the same computer. Rather, the purpose is to get the software running in the 

simplest possible environment. Configuration of multiple nodes is straightforward, but 

specific to the number and types of nodes axailable; instructions are included as part of 

the download in the file doc/mpichman-chp4 .pdf. 

To start, one downloads file mpich. tar. g:z from http: //www .mcs . an1 . gov/mpi/mpich, 
saving it, for example, in dirctory Nualusr/tools/tmp. For documentation see 

http://www-unix.mcs.anl.gov/mpi/mpich/docs/mpic~an-chp4.pdf 

The code is unpacked (into a directory mpich-1.2.4, possibly with a later version number), 

compiled, and installed using the instructions 

$ cd “ualusr/tools/tmp 
$ gzip -d mpich.tar.gz 
$ tar xvf mpich.tar 
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$ cd mpich-1.2.4 
$ . /configure --with-device=ch-.p$ --pref ix=/export/home/ualusr/tools/mpich 

--enable-sharedlib > & configure . l og  
$ make > & make.log 
$ make install > & install.log 

Since this example assumes a private version of MPI is being installed in the directory 

wualusr/tools/mpich, root privilege is unnecessary to complete these steps.t 

In the configuration step the device was specified to be --with-device=ch-p$ which is 

the correct type for MPMD (multiple-processor, multiple-data) (possibly heterogeneous) 

Unix clusters. The shared library flag --ena.ble-sharedlib is supported in systems (like 

UAL) compiled using gcc. Other configuration flags are specified in section 4.1 of the 

mpichman-chp4 documentation listed above. As the make finishes, near the bottom of 

make. log,  the following paragraph appears: 

Completed build of MPI. Check the output for errors. Also try 
executing 'make testing' in examples/test (This relies on mpirun, 
which currently works for many but not all systems. 
networks, mpirun requires that you. first setup a "machines" file 
listing the machines available; this is covered in the installation 
manual. ) 

For workstation 

Other than checking the output €or errors this test should be deferred as it tries to access 

more than one node. 

After MPICH has been built, appropriate environment variable and path have to be 

set; 

$ setenv MPIHOME "ualusr/tools/mpich 
$ set path = ($MPIHOME/bin $path) 
$ setenv LD-LIBRARY-PATH $MPIHOME/lib/shared/$LD-LIBRARY-PATH 

Then one can test the set-up by 

$ cd $MPIHOME/examples 
$ make 
$ mpirun -np 1 cpi 

~ ~ 

f For later convenience in starting up multiple nodes on heterogeneous clusters the configuration looks 
for, and tests rsh and ssh. Depending on the local set-up, either of these can appear to hang the con- 
figuration process with the most recent line in configure. log saying, for example, checking whether 
/usr/kerberos/bin/rsh works. . . , but, after a seemingly interminable delay, the time-out(s) will end and 
the configuration will continue. If this problem occurs it need not fixed right away since it will not disable 
the examples given here as they function in a single computer. 
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This runs a toy program cpi that calculates 7r by the thoroughly impractical method of 

evaluating numerically an integral whose valiie is known analytically to be 7r. The program 

subdivides the range of integration and distributes the ranges to the available processors. 

In this case the command line arguments -np 1 state that one processor is available. 

The utility script . /mpirun detects what is needed from the environment-its defaults 

correspond to the present installation-and then runs the program. 

The program cpi is the compiled version of the C program cpi. c. This program is 

thoroughly documented in reference16. The same calculation is performed by the Fortran 

program pi3. f which is run identically, replacing cpi by pi3 in the listing above. 

Using MPICH on multiple nodes requires that the available nodes are correctly con- 

figured and described. The main requirement is that rsh, or an equivalent remote shell 

access, function correctly. This is too specialized for further discussion in this manual. 

What needs to be done is clearly explained in the the mpichman-chp4 .pdf documentation 

mentioned above. Some access may require the intervention of the system administrator. 

7.2. Overview of MPI 

Just to skim the general ideas, this section extracts key points from Gropp et a1.16. For 

any kind of detail this reference, and the others listed previously, should be referred to. 

For the calculations being performed in multiple processors to be coordinated by mes- 

sage passing there are certain minimal requirements that have to be met. Basically data 

from the address space of one processor has to be written into the address space of another. 

This process requires cooperation between the two participants. One process sends the 

data, but the transaction is only complete when the other has received it. The minimal 

message interface for these two actions is 

send(address , length, destination, tag) 
receive (address , length, source , tag, actlen) 

The send line specifies the location and length (in sequential bytes) of the data to be 

transferred, and identifies the recipient. In MPI functioning on n processors, each process 

has an identifier, known as its rank, an integer in the range from 0 to n - 1; destination 

and source are so identified. The tag argument is the beginnings of a mechanism for 
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differentiating among a possible multiplicity of messages. Assuming a match of the tags, 

the receive line identifies the sender, and specifies the address where the data is to be 

placed and its expected length. The argument actlen, specifying the actual length of the 

received data, provides the beginnings of an error flagging mechanism. 

The MPI protocol goes well beyond this minimal specification of message transfer. 

For one thing the data being transferred can be organized into far more complicated, 

non-contiguous structures. Also a communicator object, identified by a comm argument, 

supports communication. So the actual MPI: send/receive interface is 

MPI-Send(address, count, datatype, destination, tag, comm) 
MPI-Recv(address, maxcount, datatype, source, tag, comm, status) 

The more-complicated data structure location information is encoded into the address , 
count, and datatype arguments. 

Before these operations can be used a certain amount of initialization is required, and 

graceful termination of the multiprocessor program is also essential. Along with MPI-Send 

and MPI-Recv, a minimal MPI version would therefore contain16 

MPI -Init Initialize MPI 
MPI-Comm-size Find out how many processes there are 
MPI-Comm-rank Find out which process I am 
MPI-Finalize Terminate MPI 

As mentioned previously, these and all other MPI routines need to be compiled into the 

simulation programs running on the various machines, using the native compiler for the 

computer language of the simulation being run. 

7.3. MPI applied to UAL 

One thing to be appreciated is that the UAL. user accesses MPI indirectly via Perl, and the 

Perl interface does not necessarily make all MPI routines described in MPI documentation 

directly accessable to the user-not even all the routines mentioned in the previous section. 

Routines needed to establish and terminate multiprocessor computations are supported, 

but arbitrary internode communication is not. The reason for this is that, because of its 

interpreted rather than compiled nature, message passing via Perl is slow. To circumvent 

this, message passing among nodes within TJAL occurs at the Cff level. The primary 
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purpose of the UAL interface is to support this indirection. So the UAL/MPI is not to be 

regarded as a general purpose interface to MPI. Rather it is an interface specialized to the 

limited set of capabilities needed to control TJAL simulation tasks, such as modeling space 

charge effects. 

Another thing to be admitted is that, though a functioning UAL multiple processor 

space charge application exists, it is not included in the CVS distribution at this time 

(December, 2002). The present documentation covers only the downloading and testing of 

the MPI environment. To proceed beyond this point to actual simulation, technical help 

and special instructions are required for downloading working code examples. 

A first test of MPI under UAL consists of 

$ cd $UAL/examples/ShortMPI 
$ mpirun -np 1 test-MPI.pl 

This runs the script test-MPI . p l ,  which is llisted next: 0 
#!/usr/bin/perl 
use lib ("$ENVIUAL-MPI-PERL)/api") ; 
use Short-MPI; 

#Create the MPI environment 
#Define the total number of MPI processes available - $numprocs 
#Define the rank of the calling process in group - $myid 

my $status-mpi; 
Short-MP1::MPI-Initialized($status-mpi); 
print "Status MPI (before MPI-Init) = ",$status-mpi,"\n"; 
my Qmpi-argv = ($0, QARGV) ; 
my $mpi-argc = $#mpi-argv + i; 
Short-MP1::MPI-Init($mpi-argc, Qmpi-argv); 
my $numprocs; 
Short-MPI::MPI-Comm-size($Short-MPI::MPI-COMM.~WORLD, $numprocs); 
my $myid; 
Short-MPI::MPI-Comm-rank($Short-MPI::MPI-COMM.~WORLD, $myid); 
printf(STDERR "Process starts on the node %d, (host = %s)\nll, $myid, $ENV{HOST)); 
Short-MPI: :MPI-Initialized($status-mpi) ; 
if($myid == 0 )  I 
print "Status MPI (after MPI-Init) = I(, $stiitus-mpi, 

' I ,  number of nodes = #I, $numprocs, '\n"; 
1 
...................................................................... 
print "\nReplace these print statements by any Per1 instructions\n"; 
print "For example cut and paste the entire contents of \n"; 
print 
print 'I (see $ENVIUAL~/examples/UI~MPI/shell~s~is~mpi .pl) \n\nll ; 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Short~MPI::MPI~Barrier($Short~MPI::MPI~COMM~W[lRLD); 
my $timestop = Short-MPI: :MPI-Wtime() ; 
my $time-proc = $timestop - $timestart; 
printf (STDERR "Node %d : time = %e \n9I, $myid,, $time-proc ) ; 

$ENV~UAL)/examples/UI/shell-sns . pl '\n" ; 



66 7.3 : MPI Multiprocessor Support: MPI applied t o  UAL 

When this script is run the output suggests a certain modification the user should 

perform before re-running the script. The suggested change is to replace the three printout 

lines (between the lines marked #### ...) by arbitrary Perl instructions. For example, 

inserting the script shell-sns .pl, the basic script annotated in section 6.2 of this manual, 

(roughly speaking) converts the MPI script into shell-sns.pl. Then running the MPI 

script produces the same calculation as running the basic script itself. Of course, since 

only one processor is in use, this has no useful purpose other than demonstration. 

Of the six basic MPI commands described in the previous section, only the com- 

mands MPI-Init, MPI-Corn-size, MPI-Corm-rank, and MPI-Finalize, inherited by class 

Short-MPI, are present in test-MPI . pl. Because these are one-time, initialization and 

finalization commands, they have to be, and can be, issued directly from the Perl script. 

As mentioned before, MPI-Send and MPI-Recv are not supported at the Perl level. 

Two other MPI commands appearing in. the script, MPI-WtimeO and MPIBarrier, 

are concerned with timing the calculation. When the same program, such as this one, is 

running on multiple processors, there needs to be a mechanism for determining when all 

processes are complete. A “barrier” is a special collective operation that does not let the 

process continue until all processes have called MPIBarrier . In this script this capability 

is applied only to the mundane task of establishing $timestop. 



Appendix A. 
Ancestry of UAL 

The ancestry of UAL can be traced back as far as the early days of the SSC (Supercon- 

ducting Supercollider) even before it had that name, when it was being designed at the 

CDG (Central Design Group) in Berkeley. 

As the SSC was being planned, it was realized that a design as conservative as the 

Fermilab Tevatron might be unacceptably expensive. At the CDG plans were set in motion 

to study this issue experimentally (Fermilab Experiment E778) and by computer simulation 

and other theoretical studies. 

The program TEAPOT18, was developed both to design and analyse experiment E778 

and to anticipate performance of the SSC using computer simulation. At the same time, 

and the same place, mapping techniques and. differential algebra were being developed to 

put the numerical work on a firmer and more powerful theoretical foundation. After the 

SSC project moved to Dallas a computational structure called PAC (Platform for Acceler- 

ator corn put at ion^)^^-^^ was developed, with the purpose of permitting the integration of 

diverse computer codes. PAC adopted the ‘,‘object oriented” approach (whose value was 

just becoming universally appreciated at the time) to computer software. At Cornell, in 

the period following the termination of the SEIC, this architecture was exploited to integrate 

TEAPOT++ (upgraded from procedural Fortran and C to object oriented C++) along 

with PAC and DA into UAL (Unified Accelerator Libraries.)’ For the first time in UAL, 

this permitted element-by-element tracking to be integrated with analyses using maps of 

arbitrary order. This satisfied the goal: “Special-purpose codes should be modular in ways 

that permit them to be combined as parts od more general calculations.” (Aside: the re- 

cently developed Element-Algorithm-Probe framework greatly expands this capability.) 

The next code to be integrated (though only through adoption of input format) into this 

environment was MAD (Methodical Aceelerator Design) which is the pre-eminent lattice 

code for designing transfer lines and sectors of high energy lattices. Shortly thereafter, 

responsive to “Call for a New Accelerator and driven by the need, within 

the US-LHC collaboration, for a mechanism to share design information of the LHC, a 

Standard Exchange Format (SXF)22 was developed and integrated into UAL, (as well, 
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of course, as into CERN database programs.) (ADXF) Accelerator Description Exchange 

Format, a closely related, XML-based, self-describing lattice description standard was 

developed (but not implemented) at the same time.23 Much of this history is indicated by 

the flowchart Fig. A.1, shown here: 

WHAT IS UAL AND WHERE DID IT COME FROM? 
FNAL [Teva t ron) conservative design 

I 
Tigner, Chao, etc. Edwards, Peggs 

Talman, etc. Can cost be reduced? 

Irwin Reduce aperture 

Include field errors 

Preserve symplecticity 

experiment 
Berkeley E778,FNAL 
ssc 

Schachinger 
C 

Dallas, SSC 
differential algebra 

object oriented 1 c++ @ Malitsky, etc. 

Cornell Malitsky, Talman Make codes modular 
sharable and 

portable 

design and analysis 

off-line simulation 

sin, etc, on-line simulation 
and control 

Brookhaven Tepikian, Pilat 

1998 

Subsequent work concentrated on applying this computational environment to practi- 

cal accelerators. Much of the effort has been of a fairly mundane nature, performing input 

conversions and interfacing between UAL and heterogeneous “proprietary” codes by plac- 

ing “wrappers” around the programs and data files that have developed over the years of 

operation of accelerators like FNAL and CESR. It was more straightforward to apply UAL 

to RHIC (Relativistic Heavy Ion Source), because of its more recent vintage, and UAL 

contributed to the design of RHIC24, and even, to  some extent, to its model-based control. 

This begins to achieve the design goal: “The same code used for the design and analysis of 

the accelerator should be built into the control system of the accelerator.” Work on UAL 
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continued after Malitsky went to the SNS in 1999.25-26 This has included the capability of 

importing special purpose codes ACCSIM and ORBIT into the UAL environment. This 

adds capabilities such as space charge analysis, radiation damage, and injection “painting” 

into the simulation e n ~ i r o n m e n t . ~ ~ - ~ ~  Also progress was made toward integrating UAL 

into the SNS control system. Currently FastTeapot is being incorporated into the RHIC 

control system. 



Appendix B. 
Glossary 

B. 1. Acronyms 
ACCSIM F. Jones Material/Bunch/Collimation code,29 
ADXF Accelerator Description Exchange Format23 
AIM Accelerator Instrumentation Module 
ALE Accelerator Libraries Extensions 
APD Accelerator Propagator Description 
API Application Prograin Interface 
cvs Concurrent Version System7 
DA Differential Algebra 
DDD Data Display Debugger 
DOXY GEN Document at ion Generator 
FTPOT 
MAD 
ICE 
MPI 

ORBIT 
PAC 
PERL 
PERLXS 
SIF 
SMF 
SPINK 
SXF 
TEAPOT 
TIBETAN 
UAL 
UAL2 
UI 
XML 
ZLIB 

Fortran Teapot 
Methodical Accelerator Design5 
Incoherent and Coherent Effects (M. Blaskiewicz) 
Message-Passing Interfacel6 

or if one prefers, :MultiProcessor Interface 
Objective Ring Beam Injection and Tracking3’ 
Platform for Accelerator Codes20 
Practical Extraction and Report Language 
Perl external Subroutine 
Standard Input For:mat31, MAD etc. input language 
Standard Machine Format’ 
tracks polarized particles in circular accelerator 
Standard exchange Format22 
Thin Element Program for Optics and Tracking’* 
Jie Wei’s acceleration code 
Unified Accelerator Libraries’ 
Java accelerator-cornmissioning version of UAL26 
User Interface 
extensible Markup Language 
Y. Yan DA l i b r a r ~ , ~ ~ - ~ ~  

While browsing the UAL directory tree to “get the big picture” it can be useful to see 

all files with a given file name extension. For example, one might wish to see all available 

examples. All such examples are Perl main programs, and all such programs have the file 

name extension . p l .  The rough area of applicability of a script can be inferred from the 
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name of the directory in which it is contained. Here is an instruction to list all examples, 

followed by two lines of response: 

% cd $UAL; find . -name * .pl" -print 
... 
./examples/ShortMPI/test-MP1.pl 
./examples/UI/shell-sns.pl 

As mentioned before, the scripts in directories other than . /examples, though out-dated, 

can be browsed and, in most cases, run. Some may be useful for code test purposes. 

B.2. File name extensions 
.bs, .xs, .xsc, .PL 

.cc, .cpp 

.hh, .h 

.c 

.css 

.11, .YY 

.PI 

. cfg 

.sxf 

.pm 

.map, .zmap 

.so 

Perl/C++ interface 
C source code 
C.f+ source code 
Cascading Style Sheet 
C++ /C header 
lex, yacc parser support 
Perl main program 
Perl Module 
DiaVTps map 
configuration data 
shared library 
SXF lattice description 



Appendix C. 
Accelerator Parameters 

T h e  contents of this appendix will probably move t o  the V A L  Physics Manual” when that 

document comes into existence. 

C.l.  Global geometry and survely 

The global ( X ,  Y, 2) and local (2, y ,  s)  coordinate systems used by UAL are identical to 

those used by MAD5. The global survey code was ported from that source, as was much 

of the discussion in this section. There is a strong prejudice towards having the reference 
orbit lie close to a plane perpendicular to the Z-axis. t 

The survey command reconstructs the global coordinates of all elements in the lat- 

tice. For this purpose all elements except RIBEND’S and SBEND’s are treated as drifts. 

Elements like KICKER’S, which could, in practice, influence the closed orbit, are assumed 

to have been set to zero. Similarly, QUAD’S etc., which would steer the beam centroid if 

they were misaligned, are assumed not to be misaligned for purposes of first calculating 

the ideal closed orbit. For the lattice to make sense as a storage ring the lattice should 

“close”, but exact closure (or any degree of closure whatsoever) is not required. In mul- 

titurn tracking every particle is displaced to take up any closure defect as its orbit passes 

the origin. Though unphysical, this discontinuous translation is at least symplectic and is 

unlikely to cause any harm to a simulation, provided it is not very large. 

Unlike the survey command, the analysis command calculates the closed orbit in 

.the presence of all steering perturbations ju.st mentioned, and also includes any vertical 

steering due to RBEND and SBEND roll errors. 

The global coordinates, both displacemeiits and angles relative to the global ( X ,  Y, 2) 

frame, are exhibited in Fig. C.l.l, which is a revised (but not intentionally changed) version 

t Within the TEAPOT module the prejudice toward the reference orbit lying in a single plane goes so 
far as to exclude non-horizontal RBEND and SBEN:D components. Out of plane reference orbits have to 
be modeled by KICK elements. This restriction could be, but has not been, lifted using the Element- 
Algorithm-Probe framework. In any case this restriction is orthogonal to the definition of both local and 
global coordinates. 
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of a figure in the MAD m a n ~ a l . ~  Fig. (3.1.2 shows the beginning of the reference trajectory. 

It starts, by definition, at ( X ,  Y, 2) = (0, 0,O) and is directed along the global Z-axis. 

x ("out") 
X ?  c 

. (translated) bJ v (~lrol1~t angle v is negative 
as the figure is drawn.) 

.. . .. . .  
8 ("(global) azimuth") 

reference orbit proj- 
ected onto X,Z plane 

Figure C.l . l:  Global coordinate lclefinitions showing angles that define 
the direction of the reference orbit relative to the global ( X ,  Y, 2) frame. 
Copied (with revision, but no intentional change) from MAD5. 

A local coordinate triad for the reference orbit passing through global position ( X ,  Y, 2) 

can be obtained by successively applying, to the global triad, the rotation matrix W = 

0@Q, where 0, a, and Q are 3 x 3-matricel3, expressed in terms of the respective angles 

0, $, and $ shown in Fig. C.1.1:t 

cos0 0 -sin0 cos$ -sin$ 0 

sin0 0 0 -sin$ cos$ 
(C. 1.1) 

The local s-axis points along the referencle orbit, the local y-axis is (ordinarily) parallel 

to the magnetic field axis, and x is chosen tal be positive "outwards"; y-axis orientation is 

fixed by the requirement that the (x, y, s )  triad be right-handed. The signs depend on the 

sign of the particle charge and the magnetic field. Fig. C.1.2 is drawn assuming positively 

charged particles in an accelerator with bend.ing magnetic field directed along the positive 

Y axis. (For these choices the entire accelerator lies in the negative X half-space.) Because 

the x and y axes would vary erratically (i.e. angle $ would be erratic) if referred to the 

local magnetic field direction, the best policy is probably to require the y axis to be always 

T The orientation of matrix 0 in Eq. (C.l.l) has been reversed relative to the formula given in the MAD 
manual in order to conform to Fig. C.l . l  while leaving global a.zimuth angle positive. 
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parallel to the Y axis, which defines a kind of globally-averaged magnetic field direction. 

In any case it is required that there be no net “twist” of coordinate y5 while advancing 

completely around the ring. 

“1 

Figure C.1.2: The reference particle starts at the lattice origin and 
passes through a bend followed by a drift. The orientation of the orbit and 
the signs of the coordinates assume the particle charge is positive and that 
the magnetic field points (up) along the positive Y axis. 

With the global position of the reference orbit specified by vector V = (X, Y, Z)T and 

its local orientation by matrix W, these quantities are updated element-by-element using 

the equations 

Vi = Wi-IRi f Vi-1, Wi = Wi-ISi, (C. 1.2) 

where, at the origin, Vo = 0, and Wo = 1 (the identity matrix) and where Ri and Si 
are, respectively, the translation vector and the rotation matrix appropriate for the i-th 

element. 

To illustrate this evolution, and especially the signs, consider the bend element at the 

beginning of the lattice in Fig. C.1.2. Its displacement vector R1 and rotation matrix S1 

are 
cos& 0 -sin& 

sin& 0 cosBb 
(C. 1.3) 

where radius of curvature pb and’bend angle o b  are both positive (for the assumed charge 

and field direction). Then, by Eqs. (C.1.2), V1 = R1 and W1 = SI. For the drift that 

R 1 = (  Pb (cos 0 Qb - 1) ) ,  S I = (  0 1 

Pb sin o b  
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follows 

R 2 =  (!:), S 2 = 1 ,  (C. 1.4) 

which yield 

and 

(C. 1.6) 

C.2. Local particle coordinates 

There has been an unfortunate lack of consistency in the definition of particle phase space 

coordinates in accelerator programs. In no’ case are the coordinates precisely equal to 

canonical coordinates (z, y, x , p x , p , ,  p z ) .  For the sake of generality and neutrality a generic 

set of coordinates will be referred to here as (21, 2 2 ,  z3, xq, x5, z g )  and some of the choices 

are indicated in Table C.2.1. In all of the cases in the table (though not necessarily for 

other codes) longitudinal momenta offsets are “normalized” by a reference momentum po 

or energy offsets are normalized by reference energy Eo. 

The transverse (x,y)  coordinates are common to all systems and, in all cases, the 

transverse “momentum” coordinates ( z 2 , 2 4 )  are identical in the “paraxial” or “linearized” 

order of approximation. As a result it is relatively straightforward, because they are “first 

order” to compare transfer matrices produced by different programs. Quantities that can 

be extracted from the transfer matrices, such as tunes, are easily compared for the same 

reason. But to the next, and higher, orders there is no consistency. This makes it especially 

difficult to compare high order maps generated by different programs, or even elementary 

accelerator parameters such as chromaticity. Within UAL there needs to be provision 

for translating between pairs of these conventions; the most important combination being 

MAD/TEAPOT. UAL performs these translations transparently to the user. 

Fortunately the coordinate choice option has no impact on the external description of 

the standard hardware elements that enter accelerator lattice descriptions. 
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Table C.2.1: Comparison of various (input file) notations for particle 
phase-space variables. 



Appendix D. 
The Evolution of Standard :Machine Format (SMF) 

D.l .  The SMF object model 

The heart of UAL is SMF (Standard Machine Format). It is an abstract accelerator 

object model capable of including all parameters of a lattice or lattices under study. It 

is, in principle, capable of being realized in various forms, internal or external, human or 

machine-readable. But, in this manual, the term SMF will mainly apply to the internal 

(to UAL) classes containing all lattice parameters. 

The organization of SMF is exhibited graphically in Fig. D.l.l; actually two separate 

object models are shown in the same figure. The more detailed version, (a), exhibits 

the original implementation. Version (b) exhibits a more succinct, pattern-based, model, 

which represents the same data in an up-to-date implementation. 

The historical evolution of lattice descriptions is briefly reviewed in Appendix A. The 

first attempt at standardization was SIF (Standard Input Format)31 which has evolved 

into MAD.5 These formats have been sufficiently general to support much accelerator 

design and simulation. They are however “closed”, meaning they are non-extensible, or 

rather, extensions can be made only unilaterally or by mutual agreement. Though the 

former has been common, the latter, more satisfactory, approach has typically required a 

degree of organization greater than the community has been able to muster. One attempt, 

SXF22, a portable lattice description supporting fully-instantiated parameter values (Le. 

including deviations), has had some acceptance. 

SMF is an abstraction or generalization of formats such as these; the primary moti- 

vation is to support extensibility. The default accelerator types and their attributes are 

pretty much the same as in these formats, but the introduction in a disciplined way of 

new types, and new attributes for existing types, is supported. Without this flexibility it 

would not be possible to incorporate diverse modules. 

Fig. D.l.l(a) shows the original SMF impliementation. One sees both a DESIGN lattice 

and a FLAT lattice. The DESIGN lattice is based on generic elements GenElement’s and 

- 77 - 
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Figure D.l.l: Standard Machine Format (SMF) accelerator lattice ob- 
ject models: (a) Initial implementation. Object classes are indicated by 
rectangles, associations by connecting lines. (b) Up-to-date, design pattern 
representation of the same data; less detail is exhibited. 
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(sub-)Line’s recursively aggregated into Line’s. Line repetition, for example to represent 

multiperiodicity, is supported as part of the DESIGN. Element parts front ,  body, and back 

are explicitly recognized. LatElement ’s arle the fully-instantiated (deviations-included) 

physical elements existing in the tunnel. (At least initially) the PLAT lattice is logically 

equivalent to the DESIGN lattice, but it represents the lattice as a single line, with no sub- 

lines and no element repetitions. At this level the element attributes are simply repeated 

even though this involves a lot of duplication if (as is usual) the same generic elements are 

used repeatedly. Alternatively, for describing the ideal machine, it would be sufficient to 

retain pointers to the design parameters. Ultimately though, every element in the tunnel 

has its own identity, so each of its attributes does also. A typical purpose for simulation is 

to study the effect of the deviations of these parameters from their design values. Unless 

storage capacity is an issue it is therefore most useful to have both elements and attributes 

flattened in the FLAT lattice. Also, because comparisons with the design lattice will 

always be of interest, it is appropriate to maintain copies of both DESIGN and FLAT 

lattices. 

Fig. D.l.l(b) shows a more succinct but more-or-less equivalent object model of SMF. 

It represents the evolution, based on experience, to a more efflcient organization. In this 

figure the distinction between design and flat lattice is not exhibited explicitly (even though 

it is still present.) More essential differences ,are the presence of a single Element class, the 

introduction of design and insert ion associations, and the treatment of “front”, “body”, 

and “back” as explicit elements. 

Rather than giving a full verbal explanation of SMF only a few comments will be made, 

starting with distinctions between Fig. D.l.l(a) and (b): 

0 GenElement ’s and LatElement ’s are distinguished primarily by their parameter 

values, a somewhat artificial distinction. This is why only Element appears in (b). 

Nevertheless, as noted above, it is appropriate to retain the design parameters even 

when an element’s parameters are changed. The design association of Fig. D.l.l(b) 

models this. 

0 When SIF was introduced, since every physical element has an entrance and an 

exit, and the fields in these regions influence orbits, it seemed natural to include 
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frontend and backend descriptions along with the body descriptions of accelerator 

elements. This feature has been retained in (external) descriptions such as MAD 

and SXF. But, in practice, the effects of these ends are usually modeled as if they 

were individual elements, typically multipole elements. There is a substantial cost, 

in coding effort and complexity, of maintaining the “front”, “body”, and “back” 

categories of element attributes, since a,ll evolution-modeling algorithms have to 

support the distinction. In the up-to-da,te (internal) implementation of SMF the 

distinction is suppressed as shown in Fig. (b). The functionality is restored by the 

insertion operation, and the Accelerator Node abstraction. For external lattice 

representations that package end effects .with elements it is necessary for the input 

parser to separate the end data appropriately. 

0 The grouping of element attributes into classes Frame (for gross geometry), Multipole 

Field (for deflections), Aperture (for particle loss) and Off s e t  (for misalignment), 

etc. packages the data contained in the ElemBucket part of Fig (a). 

Further comments about Fig. D.l.l: 

0 The actual implementation of lattice description can have a significant impact on 

performance (computation speed) of simulations. Depending on the complexity of 

the lattice and the computation power available, this may or may not be significant. 

When SMF was first implemented, to speed the traversal of the flat lattice, lines 

were represented by ( h e d  length) vectors, as shown in Fig. D.l.l. But a vector 

does not support insertion, an essential feature according to the above argument. 

It has therefore been necessary to represent the lattice by a list rather than by a 

vector. t 
0 Objects are identified by their names, as indicated by the ‘String” attributes shown 

in the figure. The “ley” attributes shown provide an alternative object identifica- 

tion provided for fast access. 

t Changes such as the replacement of vector by list are straightforward in principle, but they have not 
yet been made uniformly across all modules of UAL. To the extent possible such heterogeneity is hidden at 
the level of user scripts, but this causes the scripts to be more specialized and restrictive than they would 
ideally be. 
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0 One novel aspect of SMF is the inclusion of both value and rrns uncertainty for pa- 

rameters of the design lattice. In Monte Carlo simulations the random assignment 

of parameter deviations to actual elements can be based on the rms entries. 

0 Another novel feature is the (optional) j.nclusion of a Taylor map to describe the 

effect of the element on a particle or burich of particles. 

0 It has sometimes been considered essential to preserve the hierarchical organization 

of the DESIGN lattice even after the flattening process. Consider, for example, 

structure resonances; they depend critic;slly on lattice symmetries which are only 

apparent in a hierarchical description. Another example is families of elements 

distributed around the ring, perhaps sharing the same bus because they form a 

systematic correction circuit. We have found it easy to,model features such as these 

even in the fully flattened description in which hierarchy has not been explicity 

retained. This is is accomplished using families specified by regular expressions, as 

has been explained previously. Several examples are given in this manual. 
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D.2. SMF/RHIC example 

This  example i s  no t  useful as  a template j?om, which to  generate a practical simulation. 

Its input  f o rmat  will soon be made  obsolete in a n  upgraded UAL and the files m a y  be 

available only o n  the RHIC system. Te  purpose of the example is make  concrete the sort 

of information stored in SMF, t o  show i ts  features, and to  explain the motivat ion that has 

driven i ts  evolution. This  section should be :skipped by anyone concentrating on building a 

new simulation. 

To run this example, using the environment variable $UAL-RHIC (available only on 

RHIC systems) enter 

$ cd $UAL-RHIC/examples/SMF 
$ cat SMF.pl 
$ per1 SMF.pl 

to view and run the following UAL script: @ 
use lib (ll$ENV€UAL-RHIC)/api/ll) ; #l 
use RH1C::SMF::SMF; #2 
my $dir = "$ENV{UAL-RHIC)/data/injection"; #4 
local $smf = new RH1C::SMF::SMFO; #5 
require "$dir/rhicSMF-level-l .pl" ; # l o  
require "$dir/rhicSMF-level-2 .pl" ; #ll 
require "$dir/rhicSMF-level-3 .pl"; #12 
$smf->restore (line => "blue", 

fields => ["$dir/rhicSMF_qRB-deviations .pl" , 
"$dir/rhicSMF-D96-deviations .pl" ,I ,) ; #18 

$smf->store (f ile => #I. /out/smf/optics" , 
field => I' . /out/smf/errorsll) ; #26 

In line #5 the lattice description is declared to be of type RHIC : : SMF: : SMF, which is to 

say, specialized to RHIC. Lines #IO through. #I2 amount to being a simple continuation 

of the present script. (Recall that the require inlines the listed script, as if it were 

simply part of the enclosing script.) A few lines at both the beginning and end of script 

rhicSMF-level-1 .pl, which defines parameter values, are shown next: @ 
$Nothing = 0; 
$lxspace = 8.749000000000001; 
$lbx = 0.225; 
$ldxb = 0.826; 
$kllexdx = 0; 

$k04c2b = 0; 
$k3a4 = 0.0548196561; 
1; 

... 
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This block lists the values of all previously defined parameters. (As it happens these 

parameters are not actually used in the present script.) Next shown are lines from 

rhicSMF-level-2. pl which names elements; and defines their attributes: @ 
$smf->elements->declare($Marker, "clock6"); 
$smf->elements->declare($Drift, "oxspace"); 
$oxspace->set (8.749000000000001*$L) ; 
$smf->elements->declare ($Drif t , "obx") ; 
$obx->set (0.225*$L) ; 
$smf->elements->declare ($Vmonitor , "bpmv") ; 
$bpmv->set (O*$L) ; 
$smf->elements->declare ($Monitor, "cplmon") ; 
$cplmon->set (O*$L) ; 

$smf->element s->declare ($Quadrupole, Ilqli6l') ; 
$qli6->set (1.44*$L, O.O80074761264*$KLl, O*$TILT, 2*$N) ; 
$smf->elements->declare ($Sbend, "dOm05") ; 
$dOmm05->set(3.588966230691121*$L, -O.O1518625207276691*$ANGLE, O*$TILT); 

... 

Some of the entries in this file can be recogrdzed to be reserved words. Some are element 

types, such as $Marker, $Drift, $Vmonitor, $Quadrupole, and $Sbend, and some are 

attributes, such as $L, $KL1, $TILT, and $ANGLE. File @ names all the GenElement's and 

assigns values to all of their attributes. 

The remaining require'd script is rhicSMF--level-3. pl: @ 
$smf->lines->declare ("str06bx") ; 
$str06bx->set ($oxspace) ; 
$smf->lines->declare ("dx06b") ; 
$dx06b->set ($obx, $bpmv, $cplmon, $bpmh, $odx'b, $dxmp, $odxcltrp) ; 
$smf->lines->declare ("str06b0") ; 
$strO6bO->set($oOspace, $mvalve, $obelski); 

# beamline level 8 
$smf->lines->declare ("bper8") ; 
$bper8->set ($b06, $b07, $b08, $bog) ; 
$smf->lines->declare ("bper12") ; 
$bperlZ->set($blO, $bll, $biz, $bOi) ; 
$smf->lines->declare ("bper4") ; 
$bper4->set ($b02, $b03, $b04, $bo51 ; 
# beamline level 9 
$smf->lines->declare ("blue") ; 
$blue->set ($clock6, $bper8, $bperl2, $bper4) ; 

... 

This script defines all beamlines and, in particular, the complete lattice blue. This has 

completed the definition of the DESIGN lattice shown in Fig. D.l.l. 

There are two subsidiary scripts that arc! useful in performing the simulation. One of 

them is $UAL-RHIC/exiples/SMF/out/srnf /optics which contains lines like @ 
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... 
clock6 : marker 

oxspace : dr i f t  

dxmp : sbend 

xki4 : sbend 
xlamb : dr i f t  
blue : l i n e  = ( & 

clock6 , oxspace , 
, odxb , dxmp , 
, odOflx , dOpp06 , 
, c p h o n  , bpmh , 
, ocf l2  , olmpl , 

, odxb , bpmh , 
1 

... 

... 

... 

... 

, 1 = 8.749 

, 1 = 3.70021937558562, angle = -0.0188607907827331 

, 1 = 0.8 , tilt = 1.5707963267949 
, 1 = 4.00072211 

obx , bpmv , cplmon , bpmh & 
odxcl t rp ,  oOspace , mvalve , obelski  & 
odOfla , obeldOq1, of lq lx  , bpmv & 
obql , qio6 , o f l q l a  , obelqlq2 & 
kickh , b3m06clb, b4m06clb, b5m06cib k 

cplmon , bpmv , obx , oxspace & 

As well as defining all elements, they are here listed sequentially in the fully-flattened line 

blue. This file has been generated by the code that was described in section 6.2 @ . After 

appending the commands listed there this fi1.e can be processed by FTPOT. 

Another useful subsidiary file is $UAL-RHIC/data/in j ect ion/rhicSMF-index . p l  which 

contains: @ 
%smfI = ( 
0 => "clock6", 
1 => lIoxspace'l, 
2 => "obx", 
3 => "bpmv", 
4 => "cplmon" , 
5 => "bpmh", 
6 => "odxb", 
7 => "dxmp", 

4648 => "obx", 
4649 => "oxspace", 
1; 
1 ;  

... 

One sees that this has defined a Per1 hash which permits the rapid, sequential lookup of 

element names (hash value) in the flattened 1.attice from their position in the lattice (hash 

key). Lookup times for hashes like this are minimized by using the gperf utility. 

Finally, field deviations are encorporated. by the script rhicSMF-QR4-deviations. p l  

which, as the comment states, contains a hash of arrays for Q4 deviations, to be applied 

to elements matching the given regular expression. It begins @ 
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# create hash of arrays for 94 deviations 
$field-set-pattern = "-(q4i(?!t) Iq4o(?!t))"; 
$field-set = [ 
[ '1qB412011, [3.061873504273504e-10, 0, -0.0006297661423589744, 

0.0008720215740170938, -0.7227001269606835, -126.8879572151795, 
-73.9944598536752, -37022.31279458461, -41135.90310509401, 
-169279257.8510112, 0, 0, 3.294690580168208e-296, 
4.458448388071409e-316, 0.6893869432341878, -118.6576412356923, 
120.397765185641, 2307.623832724786, -171566.8153895384, 
27651353.40430221,1, 

1, 
[ "D96524", C4.564153846153912e-05, 7.410902400000001e-07, 

-0.01897419042166154, -0.008756266220307693, ... 1, 
I, ... 

1 ;  
1; 

The script rhicSMF_D96_deviations. p l  is similar. 

The data files that have been introduced, @ , @ , @ , and @ , are human readable 

and are, in principle, editable. Some have been produced by hand, some by machine. They 

represent yet another method of populating SMF, but this method is now obsolete and 

will cease to be supported in the future. The files have been exhibited here only to lend 

concreteness to SMF. 

One supported method of populating SMF uses Mad Parser which inputs a design lat- 

tice and, optionally, outputs the correspondiug SXF or TEAPOT file. Another supported 

method is SXF Parser, which inputs a flat, fully-instantiated lattice. The ancestry of any 

particular SXF file cannot be inferred explicitly from the SXF file itself, but it would be 

possible to reconstruct the design lattice (from which the SXF derives) by associating a 

generic parent element with each flattened element. 
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D.3. ADXF: Accelerator Description Exchange Format 

ADXF is an XML-based lattice description language.23 The schema for a matching 

“Optics database”, patterned to some extenir; after the LAMBDA design of Peggs et 

has been designed by M a l i t ~ k y . ~ ~  The variety of element attributes are shown in Ta- 

ble D.3.1, grouped into “attribute sets” .t The supported accelerator elements are listed 

in Table D.3.2 along with their applicable ahtribute sets. All elements have a length at- 

tribute apart separate from any attribute set. As well as this length, magnetic elements 

also have a magnetic length. As has been emphasized, both element types and attribute 

list types are extensible. 

t Internal to UAL “attribute sets” are referred to as “buckets”. The replacement has been made in 
external documentation since the term “bucket” has been said to be confusing. 
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Table D.3.1: ADXF attribute sets and their attributes 

87 

Attribute 
Set Type 

bend 

mfield 

rffield 

alignment 

aperture 

efield 
sfield 

beambeam 
( “weak-strong” 

:epresentation as 
lattice element) 

Attributes 

hangle 
vangle 
lmag 
knl 
ktl 
volt 

harmon 
1% 

X 

Y 

phi 
theta 
psi 

Z 

shape 
X 

Y 

ksl 
xma,yma 
sigx,sigy 

npart 
charge 

- 
Comments 

horizontal bend angle 
vertical bend angle 

magnetic length 
array of normal multipole coefficients 
a:rray of skew multipole coefficients 

array of RF voltages 
array of phase lags 

array of harmonic numbers 
x-direction offset 
y-direction offset 
z-direction offset 

(small) rotation around z-axis 
(small) rotation around y-axis 

rotation around s-axis 
~ 

aperture shape 
horizontal half-aperture 

vert ic a1 half- ap er t ure 

Em E, 
- 

integrated solenoid strength 

number of particles 
charge - 
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Table D.3.2: Basic elements recog:nized by ADXF, and their attributes. 
All elements have a length attribute, and may have an aperture attribute 
set. 

- 
marker - 

- 

sb end 

sext up ole 
oct up ole 
multipole 

I hlticker 
I vkicker 

- kicker 
solenoid 
rfcavity 

elseparat or 
monitor 

vmonitor 
monitor 

instrument 
ecollimat or 
rcollimator 
beambeam 

- 
- 
- 

- 

- 

- 

attribute 
sets 

bend 
mfield 

alignment 
mfield 

a 1 i g n m e n t 

sfield 
rffield 
efield 

aperture 

3eambeam 
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1 Off-line Simulation Package 1 
Q 

J, I I 

ADXF file (XML) 4 OpticsDatabase I 
4 ! 

JI 
k c c e l e r a t o r  Model I 

Figure D.3.1: 
off-line simulation package via the ADXF file. 

Interconnections of Optics database, online model, and 

The interconnections of Optics database, online model, and off-line simulation package 

via the ADXF file is exhibited in Fig. D.3.11. The database structure is readily describ- 

able in XML (Extensible Markup Language). The self-describing feature of XML makes 

the extensibility of SMF straightforward. Another virtue of ADXF file (and the essen- 

tially similar SXF file) is to provide a “snapshot” of the instantaneous operational optics 

configuration of the accelerator. This can be used for off-line or, for that matter, online 

analysis. 

The RHIC/SXF elements and attributes are essentially, though not exactly, the same 

as in the tables of this section. 



Appendix E. 
Truncated Power Series and Lie Maps 

This section more properly belongs in the ‘VAL Physics Manual”. It is  parked here until 

that manual comes into existence. 

E.l.  Function evolution 

Truncated power series play an important role in UAL. Their role is to approximate the 

“maps” that express “output” particle coordinates (at some place in the ring) in terms of 

“input” particle coordinates (at a different place in the ring). When truncated to linear 

order these power series reduce to the elements of the traditional, Courant-Snyder, transfer 

matrix description of the accelerator lattice. Historically, most of accelerator physics has 

been (very successfully) based on analysis performed in this limit. But effects appearing 

already at a “next order of approximation” such as chromaticity and amplitude-dependent 

detuning, have ways of intruding, even in elementary contexts, and nonlinearity becomes 

increasingly important as amplitudes are inerteased to achieve higher beam current. As soon 

as any nonlinearity whatsoever is allowed to enter the description the issue of symplecticity, 

or rather lack thereof, rears its head. Especially for hadron accelerators, for which there 

is essentially no true damping, any anti-darnping artificially and erroneously introduced 

through non-symplecticity can ruin an accelerator simulation program’s ability to predict 

the long term future. 

Symplectic maps (typically nonlinear) are also known as Lie maps. One therefore 

seeks to describe particle trajectories in an a.ccelerator by a Lie map. As with all physics, 

such a description can only be approximate. For one thing the idealized model of the 

accelerator, on which the “idealized map” is based, is undoubtedly inaccurate and incom- 

plete. Accepting this as inevitable, possible further inaccuracy results from the computer 

program representation of the map. It is the latter source of inaccuracy that is the subject 

of this appendix. Maps based on truncated power series can only approximate idealized 

maps. For reasons explained in the previoiLzs paragraph, failure of symplecticity is ex- 

pected to be more serious than other inaccuracy. An important goal of UAL is to preserve 

symplecticity, or rather to keep the inevitable failure of symplecticity controllably small. 

- 90 - 
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There is no shortage of excellent referenlce material concerning Lie maps; for example 

Dragt36 and Forest15. Because the subject is abstract, and is sometimes considered 

impenetrable, this appendix tries to give a self-contained, elementary discussion of the 

general ideas. To reduce complexity the discussion will be restricted to two dimensional, 

( z , p ) ,  phase space; (for simplicity p is used instead of p z ) .  All results generalize easily to 

higher dimensions. 

If (z0,po)  represents input particle coordinates, the sort of map M‘lo under discussion 

expresses output coordinates ( z 1 , p l )  as functions of input coordinates (50 ,  PO).  For linear 

maps this map reduces to a 2 x 2 matrix, the traditional transfer matrix of standard 

accelerator theory. If nonlinearity is present it is natural to introduce a “generalized 

transfer matrix” M’lo in which the four m.atrix elements are nonlinear functions of 20 

and PO) .  Like it or not, this is the representation one is forced to use in a computer 

representation of the map. 

Consider an arbitrary function f(z,p)-one may think of f as expressing the depen- 

dence on position in phase space of some physical quantity. A particle trajectory defines an 

evolution of the particle coordinates and it is natural to inquire about the corresponding 

evolution off .  One has to be aware of the ambiguity accompanying the distinction between 

function form and function value. For exarnlple, suppose transformation M’lo yields for- 

ward formulaq = zl(zo,po) = upo+bpo and backward formulazo = xo(z1,pl) = c z l f d p l ,  

and that the value of function f is defined t o  be “the first component squared”; at input 

this is xi, at output it is x?. An assignment one might have received in calculus class was 

to figure out the value of xg from knowledge only of x1 and P I .  Expressed in terms of 

output coordinates the input value off is ( ~ o ( ~ : l , p 1 ) ) ~  = (ex1 + d p ~ ) ~ .  From a physicist’s 

point of view, this is tortured usage. By the “evolved value of f” one presumably means 

xi, the square of the first component, evaluated at the evolved location. This is the way 

functions of coordinates are to be interpreted; for example 

x: = f ( m , ~ i )  = f (M’io (zo) , M‘io (PO))  = (azo +  PO)^ ( E  .1 .l) 

Since the form of the function does not change, to evaluate this evolution, as Eq. (E.l.1) 

shows, it is adequate to have formulas for the evolution of individual components. This is 

the functionality provided by the vectors of truncated power series provided, for example, 
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by UAL. But, for theoretical purposes, a slightly more abstract generalization of transfer 

matrices is preferable. Let us define transfer map Mlo as operating on functions (of 

location phase space) rather than acting individually on the components. That is 

which is defined to mean the same thing as Eq. (E.l.l). Forest calls M a “compositional 

map”. It is a one-component map acting in an infinite dimensional space (of functions 

defined on phase space.) Note that it is the value of the function that evolves; the form of 

the function does not change. Since zo and po can, individually, be thought of as functions 

of the (z0,po) pair, the specialization back to the representation by a vector-organized set 

of nonlinear functions is immediate. So there is no “physics” in Eq. (E.1.2) to distinguish 

it from Eq. (E.l.l). 

Assuming, as we are, that the physical elements in the lattice are known perfectly, the 

equations of motion can, in principle, be used to determine z ( s ) ,p ( s ) ,  the dependence on 

longitudinal coordinate s of a particle trajectory. Commonly the equations of motion are 

written in Hamiltonian form and knowing thcr equation of motion is sometimes expressed as 

“knowing the Hamiltonian”. Because of the complexity of accelerator lattices it is almost 

never practical to solve the equations of motion analytically and it is rarely practical to 

solve them numerically. Rather the map through a sector of the lattice is formed by 

concatenating the maps of the individual elements in the sector. This usually involves 

truncation of power series. 

E.2. Taylor series in more than one dimension and Lie maps 

The Taylor series representation of one dimensional functions is second nature to most 

scientists (perhaps because learned about in high school as the binomial theorem?) The 

function of Lie maps is to generalize this description to more than one dimension. 

The theory of function evolution, as invented by Lie, has been applied a century later, 

in the context of celestial mechanics, by H ~ r i ~ ~  and, in the context of accelerator mechanics, 

by Dragt.38 The discussion here more nearly follows Hori than Dragt. 

Let ( z , p )  be coordinates in 2D phase space, and f ( z , p )  be a function that is arbitrary 

(except for possible requirements such as smoothness and absence of vanishing derivatives.) 
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We wish to express the value of f at some phase space point in terms of the values of its 

derivatives at some other point. 

We know how to do this in 1D-use a Ta,ylor series. We therefore try to reduce the 2D 

problem to 1D. Toward this end we draw a family of smooth curves in phase space (to be 

referred to as a “congruence” of curves) that have properties: (a) there is a curve through 

every point, (b) no curve crosses any other in the region under discussion, and (e) there 

is a function S(x,p), not necessarily unique, such that x(T),p(r) (the coordinates of the 

curve as functions of a running parameter r )  are solutions of the equations 

( E  .2.1) 
dx as dp - as 

The function S(x,p) is such that its deriva1;ives on the right hand side of this equation 

define, at every point (x, p), the direction of i;he tangent to the curve passing through that 

point. Note that S is an arbitrary function. 

- - - - 
d r  a p ’  d r  ax 

Along any one of the curves of the congruence, the value of arbitrary function f can 

be expressed, as a function of r, by f(x(~),p(r)). One can define an along-the-curve 

derivative operator 

(E.2.2) 

In this notation the - is a “place holder” indicating the operator { . ,S}  is “waiting for” 

a function, such as f, for its argument. (Escept for change in sign/order-of-arguments, 

{-, S }  is the same as the function for which Dragt introduced the notation : S :.) When 

acting on function f, the result is {f, S } ,  which can be recognized as the “Poisson bracket” 

o f f  and S. 

{.,S}=-I d =--+ dx a dp a as a as a 
dr drax d d p  a p a x  a x a p ’  

Now we can exploit our congruence of Icurves for its advertised purpose of relating 

values of f at separated points, at least if the points lie on the same curve because, on 

that curve, the function depends only on the! single variable r. Let the parameters of the 

points that are to  be related be r and r + E .  It may be helpful conceptually to regard E as 

being “small”, and this may be appropriate when discussing the convergence of the series, 

but no such formal requirement is assumed, 

unconventional form, we have 

Expressing the Taylor series in somewhat 

1 
f (7 + €) = 1 + € { e ,  S }  + -E2 {{*, S} ,  S }  -t ( 2! 



94 Appendix E: Truncated Power Series and Lie Maps 

As usual the derivatives on the right hand side must be evaluated for general E but then E 

is set to zero. This is h o w n  as the Lie map corresponding to function S. Recognizing the 

terms in this series as corresponding to an exponential function, this series is traditionally 

abbreviated to 

f (7- + €) = eE{.,S) f (7) ; (E. 2 A) 

but, to evaluate the series, expansion Eq. (E.2.3) is what is required. F’urtherrnore the 

evaluation has to be truncated at some point. Any differential algebra package, such 

as COSY39 or the ZLIB module of UAL, can calculate derivatives of functions, and can 

therefore evaluate the Poisson bracket expressions appearing in Eq. (E.2.3). 

This section has been about calculus, no more, no less. There has been no mechanics, 

Hamiltonian or otherwise. If the signs in Eq. (E.2.1) had been chosen differently, say both 

positive, the analysis would go through unchanged except for the switching the sign in the 

bracket expression, which would therefore no longer deserve be called a “Poisson bracket”. 

E.3. Syrnplecticity of Lie map 

H ~ r i ~ ~  gave a different interpretation to Eq. (E.2.4), regarding it as a change of variable 

rather than as an evolution equation. To encourage this interpretation let us replace 

( z 0 , p o )  by ( [ , T I )  and ( z 1 , p l )  by ( z , p )  and interpret the equation as a change of variables 

from ( [ ,q )  coordinates to ( z , p )  coordinates. The coordinates ( J , q )  are assumed to be 

LLcanonical”-this means that their Poisson brackets reckoned using some known-to-be 

canonical starting coordinates, call them (:E’, p’), have the appropriate, 0 or 1 values. 

Copying from Eq. (E.2.3) and restoring the ‘2D arguments of f; 

Here S is, as before, an arbitrary function, and evaluation of the derivatives on the right 

hand side depends upon the congruence of curves determined by Eqs. (E.2.1). (The cryptic 

subscript 0 is supposed to convey this.) 

It was mentioned above that either one of the coordinates, say E ,  is a satisfactory 

version of the function f .  Plugging this into Eq. (E.3.1) yields 
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and a similar formula relates p to q. By restoring the single variable, along-curve pa- 

rameterization (and for compactness introducing a vector display) these equations can be 

written in a more useful form; 

This shows that the pair (z, p )  are, except for “translation” along a curve of the congruence, 

the same as the pair (t, 7). 

This has still been “just calculus”, but let us now use the assumption that ( t , q )  

are canonical variables of a Hamiltonian system. Then Eq. (E.3.3) provides a change of 

variables to new variables ( z , p ) .  Now the ainazfng part; since the ( E ,  q)  variables are, by 

hypothesis canonical through the region under discussion and (z, p )  are just “translations” 

of ( E ,  q) ,  transformation (E.3.3) is necessarily canonical. 

H ~ r i ~ ~  goes on to develop a perturbation theory based on this formulism. He regards 

the function S as a kind of “generating function” (though it must not be confused with a 

“Goldstein” generating function) and goes on to develop an iterative procedure to deter- 

mine S and new coordinates in ascending powers of a “small parameter” of the perturba- 

tion. None of this is relevant for UAL. What is relevant is that transformations generated 

by Lie maps are symplectic. By controlling the number of terms retained in the power 

series evaluation one can control (or even ma,ke negligible) the degree of nonsymplecticity. 

E.4. Hamiltonian maps 

Returning to the trajectory evolution interpretation of our equations, the Taylor series 

derived so far might seem to be useless for the following reason: it relates only phase 

space points lying on the same curve and :no prescription has been given for choosing 

the function S(z ,p )  such that two arbitrarily chosen points lie on the same curve. But, 

as it happens, we do not have to insist that the points be arbitrarily chosen. We are 

interested in points lying on a single particle trajectory. One visualizes this trajectory 

as a three dimensional curve in the (x,p,t) space, where t is time, or if one prefers, a 

longitudinal coordinate. Projected onto the (z, p )  plane the curve passing through input 
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point ( X O ,  P O )  necessarily passes through output point (21, P I ) .  The orbit is determined by 

solving Hamilton’s equations; 

(E.4.1) 

where H(x,p) is the Hamiltonian function. Notice that these equations are identical to 

Eqs. (E.2.1) if the function S in those equations is replaced by H (and r by t.) This 

magically eliminates both limitations of the formalism of the previous section. The map 

has become 

f (to + t )  = ,e t{- ,H) f (to) . ( E  .4.2) 

(As explained above, when written in this form, this notation is too compressed for the 

required operations to be exhibited explicitly, as they are in Eq. (E.2.3).) Replacing f by 

the individual coordinates, as before, yields 

(E.4.3) 

Generalized to six dimensions and truncated to arbitrary order, Eq. (E.4.3) is a form in 

which the evolution of a particle trajectory can be simulated in a computer. If Hamiltonian 

H is only approximate the evolution it produces can be only approximate, but any failure 

of symplecticity can be reduced by keeping rnore terms in the expansion. 

E.5. Discrete maps 

Eq. (E.4.3) represents a continuous mapping-the explicit appearance of t invites taking 

the limit t + 0. Similarly the occurence of factor E in Eqs. (E.3.3) invites the limit E -+ 0 

and a continuous interpretation. But, if the E factor is subsumed into the S function, 

Eqs. (E.2.4) represents a discrete map, potentially propagating the particle coordinates 

through a sector of arbitrary length. 

For example consider the function 

s = $ 2 3  + Sfx2p f s2 3 2  xp f s33p3. (E.5.1) 

Substitution into Eq. (E.3.3) yields propagation (x,p) -+ (x’,p’) 

X I  = x + ( x ,  S )  + . . . = x + :gx2 f 2s;xp i- 3s33p2 + . . . , 
(E.5.2) 

PI = P + { p ,  S )  + . . . = p - 3s:x2 - 2s;xp - s;p2 + . . . . \ 
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This map is special in that it is an identity map to linear order. It could therefore not rep- 

resent arbitrary propagation through a general sector. But, after “factoring out” the linear 

pa.rt of a general map the remaining part could be reduced to Eq. (E.5.1) by truncation 

to quadratic order. 

Perhaps the procedure just mentioned can be reversed? Suppose that propagation 

formulas (E.5.2) have been determined by applying some integrator to an arbitrary lattice 

sector. If the sector has more than a few nonlinear elements such a determination would 

have required truncation, for example to quadratic order, as in Eq. (E.5.2). The integrator 

will therefore have determined the coefficients in expansions 
x’ = x f xi92 + :r,2xp + x ; p 2  + . . . , 
p’ = p + P&l? + FFxp f P;p2 i- . . . . 

(E.  5.3)  

For these equations to be consistent with Eqs. (E.5.2) the six equations obtained by equat- 

ing coefficients must be satisfied. Regarding the four Si3 coordinates as the unknowns, they 

can be determined from just four of the equations. The remaining two equations will not, 

in general, be satisfied. But, if the integrator determining series (E.5.3) were symplectic 

(to the order of terms retained), then these equations would be redundant and the redun- 

dant equations would necessarily be satisfied. These equations can therefore be applied as 

a check on the symplecticity of the integrator. 

Assuming the integrator is symplectic so that the redundant equations (to quadratic 

order) are satisfied, the function S will have been determined to cubic order. A function 

S determined in this way can be called a “pseudo-Hamiltonian” . By using this function 

in Eq. (E.3.3), and retaining more terms in ithe series, propagation formulas for the coor- 

dinates can be obtained to higher than quadratic order. Such formulas would be useless 

for studying large amplitude features such as resonant islands, onset of chaos, or dynamic 

aperture. But for “intermediate” amplitude trajectories the formulas can represent prop- 

agation that is both “correct to quadratic order” (for example modeling chromaticity) 

while being symplectic to higher than quadratic order. 

This procedure can be illustrated by explicit example. Consider a map 

~2 = Mxl x M(‘)xl, ( E .  5.4)  

where M(l) is the necessarily symplectic, linearized matrix approximation of the map. 

(Since x represents the components as a vector, we may as well take it to represent the 
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coordinates in 6D phase space.) Define G such that 

Suppose that M has been obtained to some order of accuracy, say M(2). Then % is known 

to corresponding order. Let S be determined such that 

(E.  5.6) 

Defining 
1 N 

M(3) = 1 + {.,Sl) + 5 {{ - ,S} ,S , } ,  (E. 5.7) 

then 

M x G:(3) M(l), ( E  .5 -8) 

is symplectic to  higher order than was G(2). The quadrupole end field correction described 

in section 6.5.2 is an example of this procedure. Since the longitudinal interval for this 

correction was taken to have zero length, terms beyond the first vanish because they are 

proportional to higher powers of E .  

E.6. Computation time estimates 

This section will need t o  be modified af ter  detailed benchmark t i m e  measurements  have been 

performed. 

If a lattice is represented entirely by “kicks” (as in TEAPOT) the computation time 

is proportional to NI, which is at least equa’l to the number of magnetic elements in the 

ring, but is typically greater because elements have been subdivided in order to better 

include thick element effects. A typical value might be NI, - lo3. If the computation 

time per kick is T k  (say TI, N in arbitrary units)f then the computation time for 

kick-tracking Np particles (e.g. Np - lo3) for Nt turns (e.g. Nt N lo3) around the lattice 

using a kick code is N,N~N~TI,  - lo3. Since kick evolution is “exact” (in the context of the 

thin-element-approximated model) it is symplectic to all orders (until computer round-off 

precision becomes an issue). Also kick-tracking automatically makes output available at 

every location in the ring. 

t In a test with Nk = 701, Np = 10, Nt = lo4, the total time on a Pentium I11 laptop was 93s, which 
yields Trc M 1.3 x s. 
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Instead of element-by-element tracking one can consider the use of nonlinear maps to 

model particle orbits. Usually one is interested in particle positions at a limited set of 

positions in the ring. For investigation of long term stability or determination of beam 

distributions this set may reduce to a single point but, in general, one is interested in 

particle positions at an appreciable number of selected points that is still far less than the 

number of localized kicks in the ring. One therefore contemplates breaking the lattice into 

sectors and using nonlinear maps to compute trajectory evolution sector by sector. The 

hope would be that the map-tracking would be much faster than the kick-tracking. 

For concentrating attention on a short segment of a lattice, perhaps representable only 

by Runge Kutta numerical tracking or some other specialized method, one could model 

“the rest of the lattice” by a nonlinear map. Since only a single nonlinear mapping is 

required this application is sure to be “fast” even for a relatively high order map. But one 

is also interested in intermediate cases where ithe lattice is subdivided into some appreciably 

large number N, (e.g N, N 100) of sectors. For example sector boundaries could be taken 

at every sextupole, in which case Nc9 would be the number of sextupoles. 

Apart from the faithfulness of the simulation one wants to be sure that the time spent 

in first determining the needed maps is smaller than the time spent in applying the maps 

to the simulation task for which they are intended. This ratio depends on arbitrary factors 

such as Nt and Np and the number of times each map can be usefully re-used. We will see 

that, for typically large values of these numbers, the map-determination time is acceptably 

small, at least for modest order of nonlinearity. 

The sort of nonlinear effect one may wish to model correctly is tune dependence on am- 

plitude. The dominant nonlinear elements in lattices are typically sextupoles, but a single 

sextupole causes no tune shift in lowest order. A mapping procedure limited to “sextupole 

order”, cannot, therefore, be expected to usefully model tune dependence on amplitudes. 

Any octupoles present in the ring cause first order tune shift but, whether present inten- 

tionally or not, such octupoles are normally “weak” compared to the intentionally-present 

sextupoles. It is not uncommon for the tune shifts caused by octupoles in lowest order 

to be comparable with the tune shifts caused by sextupoles in second order. A sensible 

“lowest useful order of nonlinearity” might therefore be to perform calculations to octupole 
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order-this would correctly include tune dependence due to sextupoles, would be symplec- 

tic to one higher than sextupole order, and would include octupole effects symplectic to 

their own order. This corresponds to determining to quartic order the polynomial S in- 

troduced in the previous section. Let us adapt the proposition that, for any computation 

going beyond simple matrix multiplication, it is appropriate to carry the computation to 

this, one higher than sextupole, order. A table below shows that the generating function 

for this mapping already has 210 terms, and the computer cost increases steeply as the 

order is increased beyond this level. 

To estimate the cost (in computer time) of performing map calculations it is useful to 

know the number Nc of coefficients appearing in each of the truncated power series that 

have to be calculated. The needed formula, given by Yan40, is 

(17, + R)! N --_- 
n!R! ' c -  (E.6.1) 

where n is the phase space dimensionality and R is the polynomial order. Some numerical 

examples are contained in Table E.6.1. 

Since the map calculation time per sector is proportional to the number of elements 

per sector, the time to obtain the needed maps should be more of less independent of the 

number of sectors N,. The second last column of Table E.6.1 gives the once-around map 

calculation time for the same 0.7 x 103-kick: lattice as mentioned in an earlier footnote. 

Even for a fairly high order map the map calculation time for this lattice is much less than 

the kick-tracking number ( lo3) calculated ablove. For multiparticle, multiturn tracking, it 

seems therefore that the time for initial generation of the maps is likely to be acceptably 

short. Certainly this will be true for the C1 = 3 option recommended here for general 

purpose nonlinear tracking. One can note also that distributing the various lattice sectors 

to multiple processors makes the task of map generation readily parallelizable. 

It remains to compare computation times for map-tracking and kick-tracking. A crude 

estimate of the time for each order=R map application, relative to the time per kick 

application, is f2Nc(R)/Nc(l). This accountrs roughly for the number of multiplications 

per power series evaluation. It underestimates the kick evaluation time, which is greater 

than a linear matrix multiplication time. Accepting this estimate, the ratio of map-tracking 
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calculation time 
arbitrary units 

Table E.6.1: Number of terms Nc in truncated power series. The second 
last column contains the tiine taken in “arbitrary units” (which are some- 
thing like “seconds on Pentium I11 laptop”) to calculate a once-around SNS 
map with truncated power series of order R. Time (per particle, per turn) 
is 0.93 x for kick-tracking around the same lattice, in the same units. 
The final column is explained in the text. 

suggested minimum 
(average) kiclts/sector 

n R  

2 0  

6 0  

- 
N e  

1 
3 
6 
10 

1 
2 
3 

1 
2 
3 
4 
5 
6 
7 

1 
7 
28 
84 
210 
462 
924 
1716 

2 l ,z,pz ) . “ )  x ,... 
3 1, x,px, ’”) x2, ... x ... 

<< 1 
< 1  

3 
9 
33 
129 

8 
36 
120 
330 
780 
1680 

time Tmap(R) to kick-tracking time Tki& can be approximated as 

(E.6.2) 

For the R=3, “intermediate order” nonlinear map that has been recommended in this 

appendix, this suggests that map-tracking will be quicker than kick-tracking as long as 

N,/Nk < 1/36-i.e. the average sector subsumes more than 36 kicks. This estimate is 

incorporated into the last column of Table E.6.1, where it is expressed as a minimum 

(useful) average number of kicks per sector. For sectors containing fewer elements, kick- 

tracking is estimated to be quicker than map-tracking. 
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coupling 

chromatic effects 

transition crossing 

E.7. Future directions 

6D sector matrices 

ma,trices plus sextupole kicks 

matrioes plus TIBETAN RF cavities 

Pure kick tracking has the advantage of being “exact” and hence certainly symplectic, 

but also the disadvantage of being too slow for some purposes, especially online mod- 

eling of very large rings. Also kick-tracki:ng needs to be augmented by some sort of 

mapping representation in order to provide humanly-accessible parameterizations such 

as tune-dependence on amplitude. 

The Element- Algorithm-Probe Framework provides a promising approach to combining 

the virtues of both kick and map approaches. The capability of using different evolution 

algorithms in different sectors is what is new. An important step that will need to be taken 

to start along this route is to establish a sectalrization description format APD (Accelerator 

Propagator Description), which will specify the assignment of algorithms to sectors. The 

next few sections indicate possible approaches. 

E.7.1. Flexible FastTeapot implementations 

Some of the special accelerator properties to which FastTeapot-like code can be applied in 

the near future, and their ingredients are indicated in Table E.7.1. 

Table E.7.1: Applications for FastTeapot within the Element-Algorithm- 
Probe framework. 

Task I Method 

I IR nonlinearity 1 ma,trices plus multipole kicks 

I beam beam I matrices plus beam-beam kicks 
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E.7.2. Sector maps plus sextupole kicks 

It would be highly desirable to have a latticle model robust enough and fast enough to be 

applicable to all operational problems without any need for task-specific specialization. 

The option of combining kick-tracking and map-tracking may meet this need, espe- 

cially if there is a relatively small number of “strong” nonlinear elements (for example 

chromaticity sextupoles) and a relatively large number of “weak” nonlinear elements (for 

example magnetic field errors or quadrupole end fields). By treating the strong elements 

as kicks their individual deflections as well as, the dependence of their kicks on other strong 

kicks are accurately represented. Their resonant effects and tune dependences would there- 

fore be accurately modeled. The modificatj.ons of these effects by weak elements would 

then be handled accurately only to the order of the sector maps. We conjecture that the 

choice R=3 for map-tracking through the sectors between chromaticity sextupoles, along 

with explicit kicks at each of these sextupoles, will give tracking that is sufficiently accu- 

rate for all short term effects and most long term effects, such as dynamic aperture. This 

conjecture has not been tested however. 

For RHIC, with 5300 elements and 144 sextupoles, accepting the entry 36 from the last 

column of Table E.6.1, the ratio of computation time for map/kick mixed tracking to pure 

kick tracking would be less than 5300/144/36 M 1-optimistically the kick-map tracking 

would be two or three times faster than the pure kick tracking. But that is not the real 

point, since other potential benefits accrue. For example, there would be no penalty for 

finer subdivision, and hence more faithful, thick element and end field representations of 

elements within the mapped sectors. 

A more important benefit would be the adoption of the mapping approach. For current 

day accelerator operation there are nominal beta functions at every lattice position, as well 

as nominal phase advances and transfer matrices between different positions. Even though 

it is no small achievement to have agreement at this level, the suggestion here is for 

these matrices to be generalized to R = 3 m;%ps, which would be the basis for all machine 

studies investigations. For large amplitude, large momentum offset, investigations these 

maps would be used as described so far. For operational investigations concerning only 

a small number of lattice positions, for example kicker and pickup in a transfer function 
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determination, it would be natural to concatenate the maps to obtain a speed up factor 

close to one hundred, while retaining nearly exact contact with the nominal lattice model. 

Another promising approach, not begun as yet, would be to  reduce all the sector 

maps to “normal form”. As well as making available the “physics” that this implies, it 

would open the possiblility of “lightning fast” tracking using some form of normal form 

representation of the sector maps combined with treating strong nonlinear elements as 

kicks. 

E.7.3. Irwin factorization 

From the numerical estimates of the previoiis section it appears that the use of maps of 

order higher than R = 3 will be impractical because of being too slow. Even so, the 

kick-factorization scheme of Irwin41 could, in principle, make higher order maps practical 

for online modeling. Irwin gives a formula for the number of kicks needed to faithfully 

represent maps as a function of their order. For R = 2 , 3 , 4 , 5 , 6 , 7 , 8 ,  ... his formula gives 

8,12,18,27,36,48,64, ... as the number of k.ck factors required. The fact that this series 

increases far less rapidly with increasing R :than does N, (given in Table E.6.1) suggests 

that high order maps should be represented by kick factorization. But for the sextupole- 

to-sextupole sectorization example of the previous section, the number of kicks per sector 

seems to be insufficiently greater than the Irwin factor to justify his kick factorization for 

the R = 3 case. 
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